Abstract:
A transatrial intravascular temperature management catheter has a lower heat exchange segment positionable in the inferior vena cava and an upper heat exchange segment positionable in the superior vane cava, with a connecting segment lying between the two and positionable in the right atrium. A temperature sensor on the distal tip of the upper heat exchange segment provides accurate core body temperature signals for feedback purposes since the blood flowing past the sensor has not yet reached the heat exchange segment.
Abstract:
A system includes a heat exchange catheter line assembly configured to convey working fluid circulating to and from at least one heat exchange element on an intravascular heat exchange catheter. The system also includes a heat exchange system that itself includes a processor and is configured for fluidly communicating with the heat exchange catheter line assembly to exchange heat with the working fluid. A near filed communication (NFC) member associated with the heat exchange system and an NFC element associated with the heat exchange catheter line assembly are also included. The NFC member is configured to provide the processor with a signal representative of whether the NFC member detects the NFC element.
Abstract:
A catheter includes a working fluid supply path communicating with a source of working fluid. The catheter also includes a working fluid return path communicating with the working fluid supply path to return working fluid from the supply path to the source of working fluid. At least one of the paths is contained in a distal heat exchange region of the catheter, where the distal heat exchange region includes first and second helical paths and is made of a shape memory material.
Abstract:
A temperature management system controls a temperature of a body of a patient and determines a value indicative of a thermoregulatory activity of the patient. The system includes a heat exchange system configured to exchange heat with a body of a patient and to record operational data while controlling the temperature of the body of the patient. The temperature management system receives temperature data from a sensor, controls the heat exchange system to maintain the temperature of the body of the patient within a target temperature range, receives, in response to the controlling, operational data, determines, based on the temperature data and the operational data, a value indicative of a thermoregulatory activity of the patient, and generates, based on the value, an alert through the user interface indicating the thermoregulatory activity of the patient.
Abstract:
A method of reducing the likelihood of shivering comprises monitoring at least one physiological characteristic in a human or animal subject to detect preshivering and acting to reduce the likelihood of shivering when preshivering is detected.
Abstract:
The amount of granulated tissue, e.g., heart tissue, in a patient who has received therapeutic hypothermia following, e.g., cardiac arrest or myocardial infarction is ascertained using, e.g., magnetic resonance imaging, and based on the amount of such granulated heart tissue, subsequent treatment of the patient is implemented.
Abstract:
An intravascular heat exchange catheter has serpentine-like supply and return conduits circulating working fluid with a heat exchange system to warm or cool a patient in which the catheter is intubated.
Abstract:
A patient temperature control catheter (10) includes working fluid supply (16) and return (18) lumens through which working fluid circulates to exchange heat with a patient in whom the catheter is positioned. At least one lumen is defined by plural coils (32) axially spaced from each other. At least a first coil is a large coil that inflates with working fluid to seat against a wall of a blood vessel in which the catheter is positioned, with blood flowing through the coil so as not to block blood flow in the vessel. Alternate centering structures (116) are disclosed.
Abstract:
A catheter has an inner sleeve through which refrigerant circulates to and from a source of refrigerant. The catheter also has an outer sleeve surrounding the inner sleeve, including a distal end thereof. The outer sleeve is filled with a frozen biocompatible substance. The refrigerant is separated from the biocompatible substance by one or more walls of the inner sleeve such that the refrigerant is isolated from a patient in whom the catheter is positioned by both the inner sleeve and the frozen biocompatible substance. The refrigerant circulates through the catheter when the catheter is positioned in the patient to maintain the biocompatible substance frozen as heat is transferred from the patient to the biocompatible substance.
Abstract:
A catheter has an inner sleeve through which refrigerant circulates to and from a source of refrigerant. The catheter also has an outer sleeve surrounding the inner sleeve, including a distal end thereof. The outer sleeve is filled with a frozen biocompatible substance. The refrigerant is separated from the biocompatible substance by one or more walls of the inner sleeve such that the refrigerant is isolated from a patient in whom the catheter is positioned by both the inner sleeve and the frozen biocompatible substance. The refrigerant circulates through the catheter when the catheter is positioned in the patient to maintain the biocompatible substance frozen as heat is transferred from the patient to the biocompatible substance.