Abstract:
A wireless device performs a transmission on a primary and auxiliary access channels to enable reception by at least three base stations. The base stations perform a measurement on the received transmission, e.g., a time of arrival of the transmission. The base stations report their measurements to a position determination entity. The position determination entity estimates geographic position of the wireless device. One method used by the position determination entity includes tri-lateralization based on the received measurement reports.
Abstract:
This document provides wireless communications technologies, including methods, devices and systems. For example, a method of facilitating wireless communications is provided to include operating a wireless network to receive an access probe transmission from an access terminal requesting an access channel grant; perform, based on the received access probe transmission, a persistence test with the access terminal; receive a subsequent probe transmission for the access channel grant request; and perform, based on the received subsequent probe transmission, a subsequent persistence test with the access terminal.
Abstract:
Application mobility is a unique feature of the edge computing to support relocation of application instance across edge computing hosts or between edge computing host and cloud computing over underlying mobile network. With the active-standby mode application instance implementation with support of L2 networks, the application mobility could achieve the service continuity with low latency switching time. An application mobility mechanism can be implemented in the data plane of edge computing host under the control of edge computing platform and management. It can be also implemented in L2 switching function of the User Plane Function in 5G networks.
Abstract:
Method, systems and devices for location information determination based on timing measurements are described. One example method includes transmitting, by a communication apparatus, a timing request to a plurality of network devices, where the timing request comprises a respective expected response time for each of the plurality of network devices, receiving, at a plurality of times, a plurality of timing measurements from each of the plurality of network devices, wherein each of the plurality of times is based on the corresponding expected response time, and the plurality of timing measurements comprises a respective time of arrival (ToA) timestamp and a respective time of departure (ToD) timestamp, and determining a location information of the communication apparatus based on an estimate of a round trip delay that is computed using a difference of the respective ToA and ToD timestamps from the plurality of timing measurements.
Abstract:
Methods, systems, and devices related to related to digital wireless communication, and more specifically, to techniques related to station controlled multi-access point transmission and retransmission. In one exemplary aspect, a method for wireless communication includes receiving a multi-network node capability indication message from a first network node and a second network node indicating that each of the first network node and the second network node are capable of transmitting multi-network node transmissions. The method also includes transmitting a multi-network node association request message to the first network node and the second network node to associate the first network node and second network node into a group of network nodes.
Abstract:
Access to a wireless medium is controlled based on contention arbitration. A certain number of wireless devices are allowed by an access point to contend for a transmission opportunity. A trigger frame is used to communicate access opportunities to multiple devices. A beacon transmission may additionally be used for communication of access opportunities.
Abstract:
A method of setup a protection mechanism for scheduled transmissions to multiple stations is introduced. Through transmitting a control frame addressing to multiple stations for immediate simultaneous responses, the transmitter would know the stations that are ready for receiving the scheduled data frames and schedule the packet for those stations. Combining the transmission of the control frame with the power saving mechanism would allow triggering a group of power saving stations to wake up at same for receiving the control frame and scheduled user data frames. A new mechanism of simultaneous group responses to the control frame with orthogonal identifier information for individual station is provided to uniquely identify the responding stations.
Abstract:
Access to a wireless medium is controlled based on contention arbitration. A certain number of wireless devices are allowed by an access point to contend for a transmission opportunity. A trigger frame is used to communicate access opportunities to multiple devices. A beacon transmission may additionally be used for communication of access opportunities.
Abstract:
A transmitting wireless device provides channel spatial reuse information to a receiving wireless device for the receiving wireless device to make a determination of how to contend the medium for spatial reuse transmission, when to transmit and what transmissions parameters to use for the transmission in the spatial reuse. A timer is designated to track the remaining time for inter-ESS and/or intra-ESS spatial reuse. The spatial reuse information may include fields indicative of color code identifying BSS, transmission power used, signal to noise ratio headroom available and so on. With the spatial reuse information, the wireless device can calculate the target transmit power for initiating spatial reuse transmission without interrupting the on-going transmission, perform EDCA in spatial reuse condition to assess the channel status for contending the medium over the on-going transmission(s), tracking the spatial reuse duration and initiate a new spatial reuse transmission over the on-going transmission without interruption.
Abstract:
Multiple wireless devices in a network perform full duplex communication in which the transmission path and receiving path are spatially separated to allow simultaneous transmission and receiving. The wireless devices can either be controlled using a centralized, or point, coordination function or a distributed coordination function. A full-duplex wireless device senses the medium during transmission by itself and selectively continues the transmission when a signal is sensed on the medium. A full-duplex wireless device measures signal being transmitted by its transmitter and estimates parameters that can be used to cancel the contribution of the locally transmitted signal to the locally received signal concurrently being received during the transmission. The transmit antenna and the receive antenna of a full-duplex wireless device can be configured to be spatially isolated from each other to minimize interference between the antenna functions.