Abstract:
Disclosed are a data transmission method and apparatus. The method includes: a transmission node acquiring information about a data transmission mode, herein the information about the data transmission mode includes a rapid data transmission mode in which a time-domain length of data transmission is configured based on a time-domain symbol; and the transmission node transmitting data according to the acquired data transmission mode. In the data transmission method, the time-domain length of data transmission is configured based on the time-domain symbol, the setting of the time-domain length of data transmission is flexible, multiple opportunities of data transmission can exist in one subframe, resources used for data transmission can be guaranteed to be found rapidly when there is a data transmission demand, thus rapid data transmission is realized and data transmission delay is reduced.
Abstract:
Disclosed are a method and an apparatus for transmitting and receiving system information. The method for transmitting comprises: determining a system information repetition transmission resource area within a system information scheduling period, wherein the system information repetition transmission resource area comprises resource elements for repetitively transmitting the system information; and the receiving method comprises: a terminal detecting system information within a system information scheduling period, wherein the system information is system information transmitted on a broadcast channel and system information transmitted on a system information repetition transmission resource area, the system information repetition transmission resource area comprises resource elements for repetitively transmitting the system information.
Abstract:
A random access method and system are disclosed. The method includes: a second node sending a random access signaling to a first node; and the first node replying a random access response message to the second node, wherein random access response information of the second node is carried in the random access response message.
Abstract:
Provided are a method and device for sending or acquiring a grant signalling. The method for sending a grant signalling includes: configuring one Multi-Physical Downlink Control Channel (M-PDCCH); and sending a grant signalling to N pieces of User Equipment (UE) through the M-PDCCH. By the technical solution, the technical problem that data throughput and spectral efficiency of a system are reduced by higher PDCCH overhead caused by the fact that one PDCCH or EPDCCH signalling can be granted to only one piece of UE in the related technology is solved, and the technical effect of improving the data throughput and spectral efficiency of the system is achieved.
Abstract:
Provided are a method and device for sending control information and receiving control information. The method for sending control information comprises repeatedly sending control information within a scheduling period of the control information M times, wherein the scheduling period is the length of N radio frames, N and M are positive integers greater than 1, and N is greater than or equal to M. The disclosure solves the technical problem in the related art that control information cannot be correctly received in a low-coverage environment and thus a terminal cannot normally access a network, achieving the technical effect of accurately receiving the control information so as to ensure that the network can be accessed normally.
Abstract:
Management and coordination of sensing may be performed through a wireless sensing session management function (S-SMF) that provides policies, configuration data, or sensing assistant data related to a wireless sensing session. S-SMF may be in independent and decoupled from a session management function (SMF), which provides communication session related policies and configuration data. The S-SMF manages the wireless sensing session and the SMF manages other communication sessions. Additional functions may include a Sensing Anchor Function (AMF) configured for controlling a wireless sensing session, and a Sensing Data Storage Function (S-UPF) configured for storing wireless sensing result data from the wireless sensing session.
Abstract:
Presented are systems and methods for reference signaling design and configuration. A wireless communication device may determine X resources of synchronization signals (SS resources), wherein X is a positive integer value greater than 1. The wireless communication device may receive at least a portion of the X SS resources. The X SS resources may be associated with one element.
Abstract:
Provided are a data transmission method and apparatus, a device, and a storage medium. The method is applied to a first node. The method includes, in the case where the first node is in a connected state, receiving first-node-specific signaling, where the first-node-specific signaling carries idle-state transmission configuration information; and in the case where the first node is in the idle state, performing data transmission with a second node according to the idle-state transmission configuration information.
Abstract:
Provided is a method for indicating a resource, including: indicating, in a configured time-frequency resource region, a time-frequency resource of a service with first transmission duration pre-empted by a service with second transmission duration, by physical layer signaling, where the first transmission duration is larger than the second transmission duration. An apparatus for indicating a resource and a storage medium are further disclosed herein.
Abstract:
Provided are a system message transmission method and device, which relate to the field of wireless communications. According to the system message transmission method, a system message is transmitted at a preset resource location; and a physical downlink channel is transmitted according to the system message. The system message may include at least one of: frequency domain location information of a system, configuration information of a physical shared channel carrying a system message, configuration information of terminal access, available resource information of the physical downlink channel, and radio frame information.