Abstract:
An apparatus (10) for increasing a pulse length of a pulsed radiation beam, the apparatus comprising: a beam splitter (16) configured to split an input radiation beam (18) into a first beam (24) and a second beam (22); an optical arrangement (12, 14), wherein the beam splitter and the optical arrangement are configured such that at least a portion of the first beam is recombined with the second beam into a modified beam after an optical delay of the first beam caused by the optical arrangement; and at least one optical element (30) in an optical path of the first beam, the at least one optical element configured such that the phase of different parts of a wavefront of the first beam is varied to reduce coherence between the first beam and the second beam.
Abstract:
An apparatus for determining a characteristic of a feature of an object comprises: a measurement radiation source; a measurement radiation delivery system; a measurement system; a pump radiation source; and a pump radiation delivery system. The measurement radiation source is operable to produce measurement radiation and the measurement radiation delivery system is operable to irradiate at least a part of a top surface of the object with the measurement radiation. The measurement system is operable to receive at least a portion of the measurement radiation scattered from the top surface and is further operable to determine a characteristic of the feature of the object from at least a portion of the measurement radiation scattered from the top surface. The pump radiation source is operable to produce pump radiation and the pump radiation delivery system is operable to irradiate at least a part of the top surface of the object with the pump radiation so as to produce a mechanical response (for example an acoustic wave) in the object.
Abstract:
Designs are provided to reduce the possibility of contaminant particles with a large range of sizes, materials, travel speeds and angles of incidence reaching a particle-sensitive environment. According to an aspect of the disclosure, there is provided an object stage comprising first and second chambers, a first structure having a first surface, and a second structure. The second structure is configured to support an object in the second chamber, movable relative to the first structure. The second structure comprises a second surface opposing the first surface of the first structure thereby defining a gap between the first structure and the second structure that extends between the first chamber and the second chamber. The second structure further comprises a third surface within the first chamber. The object stage further comprises a trap disposed on at least a portion of the third surface, the trap comprising a plurality of baffles.
Abstract:
A lithographic apparatus is provided that has a sensor at substrate level, the sensor including a radiation receiver, a transmissive plate supporting the radiation receiver, and a radiation detector, wherein the sensor is arranged to avoid loss of radiation between the radiation receiver and a final element of the radiation detector.
Abstract:
A model-based tuning method for tuning a first lithography system utilizing a reference lithography system, each of which has tunable parameters for controlling imaging performance. The method includes the steps of defining a test pattern and an imaging model; imaging the test pattern utilizing the reference lithography system and measuring the imaging results; imaging the test pattern utilizing the first lithography system and measuring the imaging results; calibrating the imaging model utilizing the imaging results corresponding to the reference lithography system, where the calibrated imaging model has a first set of parameter values; tuning the calibrated imaging model utilizing the imaging results corresponding to the first lithography system, where the tuned calibrated model has a second set of parameter values; and adjusting the parameters of the first lithography system based on a difference between the first set of parameter values and the second set of parameter values.
Abstract:
A substrate stage is used in a lithographic apparatus. The substrate stage includes a substrate table constructed to hold a substrate and a positioning device for in use positioning the substrate table relative to a projection system of the lithographic apparatus. The positioning device includes a first positioning member mounted to the substrate table and a second positioning member co-operating with the first positioning member to position the substrate table. The second positioning member is mounted to a support structure. The substrate stage further comprises an actuator that is arranged to exert a vertical force on a bottom surface of the substrate table at a substantially fixed horizontal position relative to the support structure.
Abstract:
A method of lithography is disclosed that includes conditioning a radiation beam using an illumination system of a lithographic apparatus, imparting the radiation beam with a pattern in its cross-section, and projecting the patterned beam of radiation as an exposure field onto a substrate, wherein a periodic interference pattern is present in the exposure field, and relative motion is established between the substrate and a component in the illumination system, such that the periodic interference pattern is displaced in a direction which is not parallel to a direction of repetition of the periodic interference pattern.
Abstract:
An immersion lithographic apparatus includes a cleaning system for cleaning a component in the immersion lithographic apparatus in situ. The cleaning system is arranged to provide a cleaning environment in proximity of a predetermined position on a component to be cleaned. The system is also arranged to provide the cleaning environment substantially independent of a type of contamination present at the predetermined position.
Abstract:
A method of providing a pattern on a substrate is disclosed. The method includes providing a layer of photoresist on the substrate, providing a layer of top coating over the layer of photoresist, lithographically exposing the photoresist layer and developing the photoresist to form a structure, covering the structure with a coating layer, inducing a chemical reaction between the photoresist and the coating layer, which reaction does not occur in the top coating, to form regions of modified coating layer, and removing unmodified coating layer to leave behind a patterned structure formed from the regions of modified coating layer.
Abstract:
The invention provides a method for correcting thermally-induced field deformations of a lithographically exposed substrate. First, a model is provided to predict thermally-induced field deformation information of a plurality of fields of the substrate. The pre-specified exposure information used to configure an exposure of the fields is then modified based on the thermally-induced deformation information as predicted by the model. Finally a pattern is exposed onto the fields in accordance with the pre-specified exposure information as modified. The predicting of thermally-induced field deformation information by the model includes predicting of deformation effects of selected points on the substrate. It is based on a time-decaying characteristic as energy is transported across substrate; and a distance between the selected points and an edge of the substrate.