Abstract:
An optical element manufacturing method according to the present invention includes: disposing a mask on a transparent photosensitive resin; patterning said transparent resin by applying an exposure light to said transparent photosensitive resin through said mask to form a transparent layer; forming a light absorbing layer by filling a gap in the transparent layer with a black curable resin; and illuminating a mask surface of the mask with the exposure light at an angle.
Abstract:
A backlight device includes a chassis which is box in shape and having a bottom part and four side walls, a light source arranged on the bottom part of the chassis, a diffuser panel supported by a top end surface of each of the side walls of the chassis, and an optical sheet arranged on the diffuser panel, wherein the top end surface of each of the side walls is downward sloping so that height becomes continuously low toward inside the chassis.
Abstract:
The degree of an influence from wiring crosstalk between signal lines of a data signal transmission line (video signal line) is decided on the basis of an input signal generated in display controlling unit (a timing controller) at a predetermined timing (at each frame period, at each clock pulse period, or at each horizontal period) and, based on a result of the decision, the voltage amplitude of a data signal is adjusted so that it may exceed an input amplitude specification value for data line driving circuits (data drivers) by a predetermined value.
Abstract:
A LCD device has a LC layer sandwiched between a TFT substrate and a counter substrate, first and second polarizing films, a first λ/2 film between the first polarizing film and the counter substrate, and a second λ/2 film between the second polarizing film and the TFT substrate. Angle θ1 between the direction of the optical axis of the LC layer and the polarized direction of the light entering the LC layer satisfies the relationship: 0 degree
Abstract:
A lenticular lens is provided in front of a liquid crystal panel composed of a plurality of pixels. In this case, the lenticular lens is arranged so that one cylindrical lens corresponds to two pixels adjacent to each other. Then, light rays outgoing from two pixels are refracted by this one cylindrical lens and intersect with each other at a point positioned on the surface of a tablet, and then reach the right eye and the left eye of a user, respectively.
Abstract:
Disclosed is a liquid crystal display panel module. The liquid crystal display panel module includes a liquid crystal display panel in which a liquid crystal layer is sandwiched between a pair of substrates facing each other, a printed wiring board which is electrically connected to the liquid crystal display panel, a first frame-shaped chassis which is arranged in front of the liquid crystal display panel, and a second frame-shaped chassis which is electrically conductive and arranged behind of the liquid crystal display panel. In the liquid crystal display panel module, the liquid crystal display panel is held by the first chassis and the second chassis. And, the second chassis and a grounding electrode of the printed wiring board are electrically connected by attaching the printed wiring board to the second chassis.
Abstract:
A layer-stacked wiring made up of a microcrystalline silicon thin film and a metal thin film is provided which is capable of suppressing an excessive silicide formation reaction between the microcrystalline silicon thin film and metal thin film, thereby preventing peeling of the thin film. In a polycrystalline silicon TFT (Thin Film Transistor) using the layer-stacked wiring, the microcrystalline silicon thin film is so configured that its crystal grains each having a length of the microcrystalline silicon thin film in a direction of a film thickness being 60% or more of a film thickness of the microcrystalline silicon thin film amount to 15% or less of total number of crystal grains or that its crystal grains each having a length of the microcrystalline silicon thin film in a direction of a film thickness being 50% or less of a film thickness of the microcrystalline silicon thin film amount to 85% or more of the total number of crystal grains making up the microcrystalline silicon thin film.
Abstract translation:提供了由微晶硅薄膜和金属薄膜构成的层叠布线,其能够抑制微晶硅薄膜和金属薄膜之间的过度的硅化物形成反应,从而防止薄膜的剥离。 在使用层叠布线的多晶硅TFT(Thin Film Transistor,多晶硅TFT)中,微晶硅薄膜的结构使得其晶粒各自具有薄膜厚度为60%的微晶硅薄膜的长度, 微晶硅薄膜的膜厚更多为15个以下的晶粒总数,或者其晶粒尺寸为50%以下,每个微晶硅薄膜的长度均为50%以下 的微晶硅薄膜的膜厚的总和为构成微晶硅薄膜的晶粒总数的85%以上。
Abstract:
A semi-transparent reflecting plate including plural reflecting surfaces extending substantially over an entire surface of a reflecting plate, not only permitting light to pass therethrough, but also reflecting the light on the reflecting surfaces.
Abstract:
A liquid crystal display device provided herein can be switched between a display mode and a mirror mode, and can ensure a high image quality in the display mode.The liquid crystal display device comprises liquid crystal panel 200 including sub-pixels 254, 255, and back light 213 for irradiating light to the back surface of liquid crystal panel 200. Transmission sub-pixel 254 can be switched into an image display state which can allow irradiated light to exit, and a black display state which does not allow irradiated light to exit. Mirror sub-pixel 255 can be switched between a mirror state which can allow reflected light to exit and a non-mirror state which does not allow reflected light to exit, independently of transmission sub-pixel 254. A control unit places each transmission sub-pixel 254 into the image display state or black display state, and places each mirror sub-pixel 255 into the mirror state or non-mirror state.
Abstract:
A liquid crystal device is provided which is capable of being free from degradation of signal receiving sensitivity and/or malfunction without performing thinning-out and complementing on video signals of an electronic device having an embedded peripheral circuit to receive and transmit data. A stop period during which outputting of horizontal synchronizing signal made up of a video signal strobe signal STB and vertical drive clock signal VCK is stopped at least one time or more and for two horizontal periods or more during a display period in one vertical period is set by a control device (for example, timing controller). In this horizontal synchronizing stop period setting mode processing, a first signal (for example, status signal) indicating that the outputting of the horizontal synchronizing signal is in a stop state is transmitted to an electronic circuit (for example, peripheral circuit).