Abstract:
Computing systems and methods to producing a reverse time migration model dip-guided image using processed vertical seismic profile data are provided. In one embodiment, vertical seismic profile data for a subsurface geological formation is obtained. One or more dip estimates corresponding to the subsurface geological formation are also obtained. One or more model dip-guided reverse time migration imaging conditions are determined and applied to the obtained vertical seismic profile data to produce the processed vertical seismic profile data.
Abstract:
A technique includes designing a streamer, which includes a cable and seismic sensors based at least in part on a relationship between vibration noise and a bending stiffness of the cable.
Abstract:
A technique facilitates the use of seismic data. The technique utilizes an autonomous underwater vehicle to obtain data on water column characteristics in a seismic survey area. The data can be used to adjust aspects of the seismic survey data and/or the seismic survey technique.
Abstract:
A marine seismic streamer comprising a solid, hydrophobic core member that is encased in a hydrophobic streamer skin/casing. The hydrophobic streamer skin may be extruded onto and/or heat welded to the hydrophobic core member. The hydrophobic streamer skin/casing may comprise a thermoplastic polyurethane that includes fluorine and/or silicon moieties, silicon, polydimethylsiloxane or the like. The hydrophobic streamer skin/casing may reduce the drag of the streamer and may provide anti-biofouling properties to the streamer. A hydrophobic paint, coating or polymer may in some instances be disposed on top of the hydrophobic streamer skin/casing.
Abstract:
A technique includes modeling a fundamental component of a vibroseis sweep that is injected into the earth based on a ground force measurement and a reference sweep. The technique includes determining an operator to compensate seismic data acquired in response to the injected vibroseis sweep based at least in part on the reference sweep and the fundamental component, and the technique includes applying the operator to the seismic data.
Abstract:
A technique includes decomposing a signal that is derived from a seismic acquisition into a plurality of signals such that each signal is associated with a different frequency band. For each signal of the plurality of signals, the technique includes performing the following: decomposing the signal into subbands in successive stages, where the subbands are associated with at least different frequency ranges of the signal; selectively applying adaptive noise attenuation in between the successive stages such that the stages decompose noise-attenuated subbands; and reconstructing the signal from the subbands resulting from the decomposition. The technique includes combining the reconstructed signals.
Abstract:
Methods and systems for survey designs are disclosed. In one embodiment, a method of towing an array of marine streamers is disclosed, wherein: the array includes a plurality of receivers, the array includes a plurality of steering devices, and the array is towed along a first portion of a coil sail path; steering the array of marine streamers along two or more depths; and steering the array of marine streamers to a slant angle while maintaining the array of marine streamers at their respective two or more depths.
Abstract:
A multiple axis sensor assembly includes an enclosure and encapsulated microelectromechanical system (MEMS) sensors. The encapsulated sensors are disposed inside the enclosure and are mounted in different orientations, which correspond to different axes of the sensor assembly. A controller of the sensor assembly is disposed in the enclosure and electrically coupled to the MEMS sensors.
Abstract:
A technique includes performing reverse time imaging to determine an image in a region of interest. The reverse time imaging includes modeling a pressure wavefield and a gradient wavefield in the region of interest based at least in part on particle motion data and pressure data acquired by sensors in response to energy being produced by at least one source.
Abstract:
A technique includes processing seismic data indicative of samples of at least one measured seismic signal in a processor-based machine to, in an iterative process, determine basis functions, which represent a constructed seismic signal. The technique includes in each iteration of the iterative process, selecting another basis function of the plurality of basis functions. The selecting includes based at least in part on the samples and a current version of the constructed seismic signal, determining a cost function; and interpreting the cost function based at least in part on a predicted energy distribution of the constructed seismic signal to select the basis function.