Abstract:
The present invention relates to a device and a method for monitoring an access to a patient, in particular a vascular access in extracorporeal blood treatment, in which a patient's blood is withdrawn from the patient via an arterial conduit and is returned to the patient via a venous conduit. In the device according to the present invention and in the method according to the present invention, an alternating voltage signal, relative to a common ground potential, is coupled in and out of the arterial and venous conduits, and the blood flowing through the arterial and venous conduits is at ground potential. In this way, disturbances, which can be attributed particularly to movements of the conduits, are reduced.
Abstract:
Disposable, pre-sterilized, and pre-calibrated, pre-validated conductivity sensors are provided. These sensors are designed to store sensor-specific information, such as calibration and production information, in a non-volatile memory chip on the sensor on in a barcode printed on the sensor. The sensors are calibrated using 0.100 molar potassium chloride (KCl) solutions at 25 degrees Celsius. These sensors may be utilize with in-line systems, closed fluid circuits, bioprocessing systems, or systems which require an aseptic environment while avoiding or reducing cleaning procedures and quality assurance variances.
Abstract:
An extracorporeal blood system includes: an extracorporeal blood machine including an extracorporeal blood circuit; an access device enabling the extracorporeal blood circuit to be connected to a patient; first and second tube connecting members for connecting respectively to first and second tubes of the extracorporeal circuit; first and second electrodes held, at least in part, by the first and second tube connecting members so as to contact blood flowing through the extracorporeal blood circuit, the first and second electrodes enabling an electrical signal to be injected into the extracorporeal blood circuit; first and second contact members contacting the first and second electrodes respectively; and electronics coupled operably to the first and second contact members for applying the electrical signal, the signal used to monitor the access device.
Abstract:
A system for removing cryoprotectant from a cryoprotectant-containing liquid stored a container comprises a cryoprotectant removal device that receives the cryoprotectant-containing liquid and a cryoprotectant-free dialysate liquid and that is operable to transfer cryoprotectant to the dialysate liquid. A differential conductivity device is arranged to continuously measure the difference in conductivity between dialysate liquid entering the device and dialysate liquid that has received cryoprotectant transferred by the dialyzer discharged from the device. A controller is operable to control the flow of the liquids through the device in response to the measured difference in conductivity, and particularly to stop the flow of the cryoprotectant-containing liquid when the measured differential conductivity indicates that the cryoprotectant has been substantially removed from the liquid.
Abstract:
Disposable, pre-sterilized, and pre-calibrated, pre-validated conductivity sensors are provided. These sensors are designed to store sensor-specific information, such as calibration and production information, in a non-volatile memory chip on the sensor. The sensors are calibrated using 0.100 molar potassium chloride (KCl) solutions at 25 degrees Celsius. These sensors may be utilize with in-line systems, closed fluid circuits, bioprocessing systems, or systems which require an aseptic environment while avoiding or reducing cleaning procedures and quality assurance variances.
Abstract:
The measurement of blood flow in a dialysis shunt is obtained by injection of an indicator material into a venous line leading from dialysis equipment to the shunt. The blood flow in an arterial line leading from the shunt at a location downstream of the venous line to the dialysis equipment is monitored by an arterial line sensor for the presence of the indicator material. A detector connected to the sensor provides a dilution curve in response to the presence of the indicator material and the blood flow in the shunt is calculated from the area under the dilution curve. The locations of the arterial and venous lines in the shunt can be reversed to obtain a measurement of blood recirculation from the venous line into the arterial line.
Abstract:
The measurement of blood flow in a dialysis shunt is obtained by injection of an indicator material into a venous line leading from dialysis equipment to the shunt. The blood flow in an arterial line leading from the shunt at a location downstream of the venous line to the dialysis equipment is monitored by an arterial line sensor for the presence of the indicator material. A detector connected to the sensor provides a dilution curve in response to the presence of the indicator material and the blood flow in the shunt is calculated from the area under the dilution curve. The locations of the arterial and venous lines in the shunt can be reversed to obtain a measurement of blood recirculation from the venous line into the arterial line.
Abstract:
Apparatuses, devices, systems and methods for detecting access disconnection during medical therapy are provided. The present invention includes an electric circuit coupled to, for example, a blood circuit used during dialysis therapy. The electric circuit can inject an electrical signal into the blood circuit such that changes in an electrical value in response to access disconnection, such as needle drop-out or catheter drop-out, can be effectively detected.
Abstract:
A device for monitoring the access to the cardiovascular system of a patient undergoing an extracorporeal treatment of blood in a machine (1) comprising a treatment device (4) and an extracorporeal circuit (2), comprises: a voltage generator (16) for generating a potential difference between a part of the machine (1) and a first point (B) of a venous branch (8) of the extracorporeal circuit (2), connecting the patient to the treatment device (4); a detector (17) for detecting the value (dV) of a quantity that correlates with the electric current along at least one section (10a; 10b; 10c) of the venous branch (10) between the first point (B) and a venous needle (13) fitted at the end of the venous branch (8) and inserted in the vascular system of the patient (P); calculating means (15) for comparing the detected value (dV) with a reference range (I).
Abstract:
The measurement of blood flow in a dialysis shunt is obtained by injection of an indicator material into a venous line leading from dialysis equipment to the shunt. The blood flow in an arterial line leading from the shunt at a location downstream of the venous line to the dialysis equipment is monitored by an arterial line sensor for the presence of the indicator material. A detector connected to the sensor provides a dilution curve in response to the presence of the indicator material and the blood flow in the shunt is calculated from the area under the dilution curve. The locations of the arterial and venous lines in the shunt can be reversed to obtain a measurement of blood recirculation from the venous line into the arterial line.