Abstract:
A vehicular air-conditioning apparatus includes an adsorption heat pump including a plurality of containers provided with an adsorption-desorption device and an evaporation-condensation device, a circulation path configured to circulate a coolant between an internal combustion engine and the adsorption-desorption device of the container that performs a desorption process, a heat supply device that is disposed in the circulation path to heat the coolant that circulates through the circulation path, and a control device configured to control a flow rate of the coolant in the circulation path such that a flow rate of the coolant, which flows into the adsorption-desorption device of the container that performs a desorption process, is reduced to be below a predetermined flow rate when a temperature of the coolant in the circulation path on a downstream side of the heat supply device is lower than a predetermined value.
Abstract:
A self-cleaning metal hydride heat recovery system comprising a thermally insulated housing partitioned into at least two thermally insulated chambers, each chamber enclosing a metal hydride reactor assembly containing a regenerating, high-temperature metal hydride alloy, an ambient air inlet adapted to receive an ambient air stream into the housing to be fed to at least one of the two thermally insulated chambers, a fluid recirculation circuit configured to recirculate an exhaust stream as received from an exhaust source, the fluid recirculation circuit comprises a mixer adapted to mix a portion of a recirculation stream and the exhaust stream to provide a resultant stream, fluid stream switching means coupled to the mixer and adapted to switch flow of the resultant stream and the ambient air stream in a cyclic manner, flow regulating means provided downstream of the metal hydride reactor assemblies, and an exhaust outlet.
Abstract:
A method of operating a cooling system that has at least one evaporator containing a refrigerant and at least one adsorbent chamber containing adsorbent configured to provide adsorption of vaporized refrigerant from the at least one evaporator in a cooling mode and provide desorption of the refrigerant to the at least one evaporator in a recharging mode, the method including; controlling the adsorption and desorption of the refrigerant of the at least one adsorbent chamber between the cooling modes and recharging modes during a cooling cycle; ceasing desorption of the refrigerant from the at least one adsorbent chamber; allowing adsorption of the vaporized refrigerant from the at least one evaporator; and maintaining the at least one adsorbent chamber in an adsorbed state at the end of the cooling cycle in a storage mode.
Abstract:
A method of operating a cooling system that has at least one evaporator containing a refrigerant and at least one adsorbent chamber containing adsorbent configured to provide adsorption of vaporized refrigerant from the at least one evaporator in a cooling mode and provide desorption of the refrigerant to the at least one evaporator in a recharging mode, the method including; controlling the adsorption and desorption of the refrigerant of the at least one adsorbent chamber between the cooling modes and recharging modes during a cooling cycle; ceasing desorption of the refrigerant from the at least one adsorbent chamber; allowing adsorption of the vaporized refrigerant from the at least one evaporator; and maintaining the at least one adsorbent chamber in an adsorbed state at the end of the cooling cycle in a storage mode.
Abstract:
An air changeover system for a metal hydride heat pump is disclosed. The system includes metal hydride reactor modules aligned and separated by a partition; a shell containing the reactor modules, the shell is compartmentalized to define separate insulated chambers for each of the reactor modules; and a bearing assembly supporting the modules at a location about the partition, wherein the bearing assembly rotates said modules about an axis during the absorption and the desorption mode. The system reduces thermal inertia and pressure drop in the heat transfer medium while flowing through the heat pump, to enhance the performance and conserve energy.
Abstract:
An absorption cycle based system is disclosed for using waste heat from a vehicle and providing selective heating, cooling, and dehumidifying to a vehicle compartment. The system includes a waste heat loop in thermal communication with a power generating unit of the vehicle, and a vapor absorption subsystem. The vapor absorption subsystem may include a thermal compressor in thermal communication with the waste heat loop, a radiator unit, a condensing unit for heating the vehicle compartment, an evaporating unit for selectively cooling and dehumidifying the vehicle compartment, and a plurality of valves configured to selectively direct refrigerant through the vapor absorption subsystem. The vehicle compartment may include at least one of a passenger cabin, an electronics housing, a battery pack, an engine compartment, and a refrigeration compartment.
Abstract:
A cooling system including a first cooling apparatus thermally exposed to a space to be cooled. The cooling system further includes a second cooling apparatus thermally exposed to the space to be cooled and thermally exposed to the first cooling apparatus. Heat discharged from the second cooling apparatus powers the first cooling apparatus.
Abstract:
A system for cooling a vehicle compartment using a twin cell thermal battery and waste heat. Cool air from the evaporators of a twin cell thermal battery system is used to chill a compartment, such as an icebox in a trunk or a cabin of a vehicle. The energy needed to create the cooling effect for the cool compartment comes directly from the waste heat of vehicle exhaust gas. The system provides for the air conditioning and charging mode to work simultaneously because of a twin cell battery configuration. A thermoelectric generator (TEG) is also provided in addition to the twin cell battery thereby making the system self-powered. The system uses energy that would otherwise be lost to the environment to provide a cooling source within the vehicle.
Abstract:
A cooling system including a first cooling apparatus thermally exposed to a space to be cooled. The cooling system further includes a second cooling apparatus thermally exposed to the space to be cooled and thermally exposed to the first cooling apparatus. Heat discharged from the second cooling apparatus powers the first cooling apparatus.