摘要:
A curved pathway including a double helix form with no center support column includes a plurality of segments, wherein each of the segments is formed from a plurality of rods coupled to a plurality of connecting nodes. The plurality of rods are arranged in a skewed tetrahedral geometry, which causes the plurality of stair segments to form a helical structure when the plurality of segments are coupled together. The plurality of rods form a spine on an underside of the plurality of stair segments. A pathway surface is coupled to each of the segments. In alternate embodiments, the curved pathway may be formed from sheet metal creased to form a plurality of linear support locations and connecting nodes.
摘要:
There are a large number of sites in the world's oceans and rivers that can provide a significant, viable, and cost effective source of renewable energy. Many are strategically located close to populated areas where these sites can be used to harness energy using ecologically benign hydrodynamic technology. A hydrodynamic array comprises multiple hydrodynamic elements for producing electricity by the motion of ocean tides or river currents and forces acting on the hydrodynamic array, which is immersed in ocean tides or river currents and which is in motion relative to the ocean tides or river currents.
摘要:
An energy storage bridge includes a plurality of bridge girders and a bridge deck. The bridge girders include multiple steel pipes for carrying loads and storing energy in a form of compressed air contained therein and a plurality of web plates. The bridge deck is disposed on top of the bridge girders and configured for loading live loads. The steel pipes are assembled in at least a row aligned vertically. Each web plate connects a row of the steel pipes at a center line separating the steel pipes into two halves. Alternatively, a steel pipe is connected by two webs at the two sides of the pipe. Each bridge girder forms an energy storage unit between two consecutive movement joints of the energy storage bridge. Every two consecutive storage units are joined by a high pressure flexible pipe to form a giant energy storage unit. Each energy storage unit is provided with inlet and outlet pipes to in-take compressed air from electric compressors driven by the grid power or by regenerated powers, and to release the compressed air to generate electricity. The bridge girders are disposed at a predetermined transverse spacing across the width of the bridge deck and configured for supporting the bridge deck as a roadway surface.
摘要:
The invention is an Energy Storage Bridge (ESB) consisting of air-tight steel pipes, which are used to store the compressed air as stored energy, also used as the load carrying structural elements of the bridge. The stored energy can be the unwanted grid power or the intermittent regenerated energy sources. When the energy is needed, the compressed air is released to convert back to electricity, or to make use of the compressed air to produce hot water during its compression cycle, and cool air at its decompression and expansion cycle when it absorbs heat- an air conditioning technology called Air Cycle Air Conditioning (ACAC) widely used in commercial aircraft. For sea-crossing bridges, because of their great lengths the bridge body volume is enormous, and because of their remoteness from populated areas, they suit well for mass energy storage attached to power plants. With safety measures built in the steel pipes, the ESB can be applied to city road bridges. Since these bridges are not far from populated areas, they can be used as small energy storage units that provide the nearby industrial and commercial complex as well as residential buildings hot water and compressed air for air-conditioning using ACAC technology. The process eliminates the conversion of compressed air back to electricity, but directly uses the compression and decompression cycles to supply hot water and cool air for air-conditioning to the nearby consumers.
摘要:
The invention relates to a method and installation for constructing highways.The object of the invention is to extend operational capabilities of a mobile installation for constructing a highway in space-limited enviroment without reducing the traffic intensity and construct the highway above an existing main traffic motorway. The method of the present invention consists in constructing the highway in the form of an elevated road passing at least by the part thereof over the existing motorway and is characterized in that a portal type mobile self-propelled installation is used. The moveable legs of said installation are disposed within the land allocation of the existing motorway.
摘要:
The Hybrid Modular Ramp and The Hybrid Modular Ramp System are new in their design of portable and movable wheelchair no step access. One of the key points to this innovation is the rigid welding of the incline side rails at the slope of 1:12. This prevents the ramp from bring installed correctly at any other slope or pitch. Another innovation is the design feature that allows the use of various types of flooring material (some examples are: 1″ plywood, 5/4″ decking, steel and aluminum plating, various gratings both ferrous and non-ferrous, fiberglass grating, vinyl decking and various composite decking). More innovations include the use of a single material for construction and simple assembly and installation with minimal fasteners.
摘要:
Composite elements having the following layer structure: (i) 2-20 mm of metal, (ii) 10-100 mm of compact polyisocyanate polyaddition products obtainable by reacting (a) isocyanates with (b) polyether polyalcohols, if desired in the presence of (c) catalysts and/or (d) auxiliaries and/or additives, (iii) 2-20 mm of metal.
摘要:
An ice composite body (10) has an inner ice core (11) and a protective outer armour shell (12). The outer armour shell (12) consists of a base section (13), side sections (14) and a separate top section (15), which is free to move vertically between the side sections (14). The inner ice core (11) is maintained in a frozen condition in use by refrigeration pipes (21), which are located at various levels therethrough. The inner ice core (11) is built up from thin layers of ice which are frozen one after the other. Following the freezing of each layer of ice the layer is rolled using a roller apparatus which provides a roller pressure in the range of 3.5 to 8 Newtons/mm2. The ice composite body (10) can be used in warm or cool waters for applications such as bridges, breakwaters, causeways, pontoons, artificial islands, dams, tidal barrages, wave power barrages, harbour walls, wind power farms or aircraft runways.
摘要:
An elevated enclosure system, particularly for an elevated conveyor in a bulk material processing plant, comprises a tubular concrete enclosure (1) spanning upright supports (3) and acting as a beam.
摘要:
In order to design an infrastructure of an elevated bridge, first a target ductility factor nulld and target natural period Td for the infrastructure are set in connection with an assumed earthquake motion. Subsequently, a yield seismic coefficient for the target ductility factor nulld and target natural period Td is obtained from a yield seismic coefficient spectrum for the assumed earthquake motion as a design seismic coefficient Kh. On the other hand, a target yield rigidity Kd corresponding to the target natural period Td is obtained. Subsequently, the design seismic coefficient Kh is used to obtain a design horizontal load bearing capacity Hd and a displacement corresponding to the design horizontal load bearing capacity Hd is obtained as a design yield displacement nulld from the target yield rigidity Kd. Subsequently, the design horizontal load bearing capacity Hd is distributed into a horizontal force Hf to be born by the RC rigid frame and a horizontal force Hb to be born by the damper-brace. Next, member sections of the RC rigid frame and the damper-brace are set so that the RC rigid frame and the damper-brace resist the horizontal forces Hf, Hb with ultimate load bearing capacities and displacements corresponding to the horizontal forces Hf, Hb equal the product of the design yield displacement nulld and target ductility factor nulld, that is, nulldnulld.