Abstract:
The invention is a new linkage for connecting the piston and the piston actuator in a high pressure pump. All of the compression forces transmitted from the piston actuator to the piston by this linkage will be axial forces parallel to the axis of the piston since the linkage will not transmit forces to the piston which are transverse to its axis. This linkage allows the use of hard brittle materials such as ceramic materials in the piston because any misalignment between the axises of the piston actuator and the piston will not result in bending forces being applied to the piston which would cause it to break.
Abstract:
A piston shoe holddown assembly for maintaining the piston shoes of an axial piston fluid pressure device against the cam surface of the cam plate includes a holddown plate overlying a shouldered portion of the piston shoes and an annular groove about the circumference of a recess in the cam plate having a resilient retaining ring radially expanded into the groove and overlying the holddown plate.
Abstract:
Slip ring assemblies for controlling pitch of a wind driven blade such as those utilized in wind turbines can include a series of grooves disposed about an outer perimeter of a rotating portion, each one of the grooves comprising a first planar surface intersecting with a second planar surface at an angle of 75 to 105 degrees, and a concavely rounded bottom portion at the intersection of the first and planar surfaces. The rotating portion of the slip ring can be formed of a bronze material and may include a graphite coating. Also disclosed herein are wind turbine assemblies employing the slip ring assemblies.
Abstract:
The invention relates to a guide block and a method for embodying divisions on a slide plane (22) of a guide block blank (47). The divisions (25) are applied to the guide block blank (47), then a base surface (26) for the slide plane (22) on the guide block blank (47) is pre-prepared. After introduction of a material (41) for application to the base surface (26), a local fusion of the introduced material (41) is carried out, by means of a non-contact heat input (35). Particular forms for the divisions (25) are generated by means of moving the guide block blank (47) and/or a beam (35) of the heat input (34) relative to each other. Finally the support surfaces of the molten material (41) are levelled to generate a planar support surface for the slide plane (22).
Abstract:
A hydraulic machine-has a rotating group located within a housing and a port plate to control flow from the barrel of the rotating group to inlet and outlet ports. The port plate is sealed against one of the housing or barrel and sleeves extend between the other of the housing or barrel to accommodate misalignment between the barrel and housing as the barrel rotates.
Abstract:
In a swash plate type compressor having a swash plate rotated by a drive shaft, the swash plate is made by attaching a bronze-based metal plate to a base plate. The bronze-based metal plate forms an axial end of the swash plate, along which a shoe slides when the drive shaft is driven is rotated. The shoe is held by a piston slidably inserted in a cylinder bore which is formed in a cylinder block. It is preferable that the base plate is made of iron.
Abstract:
A porous bronze 1b and a resin 1c impregnated in pores of the porous bronze 1b formed on a backing metal 1a constitute a bearing 1. At a surface to be brought into contact with a crank shaft 5, porous bronze 1b and resin 1c are sparsely exposed. Ratio of area of exposure of porous bronze 1b at the contact surface 1d is at least 5% and at most 60%. Thus a bearing for a refrigerating compressor having high seizure resistance at the time of boundary lubrication and having small amount of wear caused by sliding as well as a refrigerating compressor employing the same can be obtained.
Abstract:
The casing of the high-pressure pump consists of two integral segments. The first segment comprises a cylindrical borehole receiving the pump shaft 5 and its ball bearings 4. The second segment 1b comprises another borehole receiving a swash plate 9 rigidly affixed to the pump shaft 5, a cylindrical core 11 with parallel sides 11a, 11b and crossed by a plurality of open-end boreholes 12 receiving the pistons 13, a second cylindrical core 16 bearing check-valves 17, and a plug 19 resting against a shoulder 18 of the second core 16 in such manner as to keep the cores 11 and 16 compressed against each other and resting against a circular stop 7 in the second segment 1b of the pump casing 1. The inner boreholes of the two segments 1a and 1b are separated by a seal 2 and the parts located in the second segment 1b are in contact with the injection gasoline.
Abstract:
A compressor assembly is disclosed including a compressor mechanism resiliently mounted within a hermetically sealed housing. The compressor mechanism includes a crankcase having a radially extending mounting flange portion, which is resiliently connected to the housing sidewall at a plurality of circumferentially spaced locations by a plurality of mounting assemblies. Each mounting assembly comprises a rubber bushing received within a hole in the mounting flange, and a threaded stud that extends through a hole in the bushing and engages a threaded hole in a steel block welded to the housing sidewall above the mounting flange. A washer and retaining nut on the bottom of the threaded stud suspendingly support the mounting flange. In this manner, only a peripheral portion of the washer contacts the mounting flange circumjacent the hole therein, thereby minimizing noise transmission to the housing. Lateral movement of the compressor mechanism is absorbed by the bushing.