Abstract:
An optical sensing device for using light to locate objects or features in a field of view comprises a light source; a controllable lens having two states and being controllable between them, for example a multifocal lens having two or more foci for focusing light from the light source; and a sensor able to sense light reflected from an object, to determine information of the object. The use of two or more foci adds dynamic range to optical sensing to allow for reliable detection over a wide range of distances.
Abstract:
An automated shutter for dark acclimating a sample, comprising a base and a head mounted to the base and movable between an open and closed position. The automated shutter further comprises one or more artificial light sources and one or more optical detectors disposed in said head or base, and wherein the head is contiguous with the sample when moved into the closed position. Another embodiment comprises an enclosure placed over a sample to be dark acclimatised, with one or more artificial light sources and optical detectors disposed within or closely adjacent to said enclosure which is configured to be transformed between an optically transparent state and an optically opaque state.
Abstract:
Rotary shutter assemblies for imaging photometers and methods for using such shutters are disclosed herein. In one embodiment, for example, a method for capturing an image with an imaging photometer can include positioning a rotary shutter having an aperture at a first position such that the shutter blocks light traveling along an optical axis from a light source being measured to an image sensor of the photometer. The method can include pivotably moving the shutter at a generally constant angular speed to a second position with the aperture aligned with the optical axis to expose at least a portion of the image sensor to the light for a first predetermined exposure time. After exposing each portion of the image sensor to the light for the first exposure time, the method can include pivotably moving the shutter at the angular speed to a third position such the aperture is not aligned the optical axis, and then pivotably moving the shutter from the third position back to the first position without rotating the shutter 360 degrees.
Abstract:
An optical sensor includes a light receiving device disposed in a housing, an exterior filter rotatably mounted to an attachment surface of the housing, and a light intercepting member which rotates along with a rotation of the exterior filter to adjust an amount of light incident on a light receiving surface of the light receiving device. In this optical sensor, the light intercepting member has a rotary shaft fixed at its center, and has a light adjusting mechanism for adjusting the amount of light incident on the light receiving surface of the light receiving device in a range in a direction of rotation around the rotary shaft. Accordingly, the sensitivity of the optical sensor can be arbitrarily adjusted with a high accuracy.
Abstract:
The invention concerns an irradiation device for testing objects coated with light-sensitive paint, comprising a EUV radiation source, an optical system for filtering the radiation of the EUV radiation source a chamber for receiving the object, as well as systems for intersecting the trajectory of the rays on the object. The invention also concerns a method for operating such a device. The invention aims at obtaining as quickly as possible an illumination at least partly simultaneous of several irradiation fields, with different doses, by using an inexpensive laboratory radiation source without resorting to complex optical systems. Therefor, the invention provides a device comprising a simplified and compact optical system, with closable diaphragm apertures located in front of the object to be irradiated and at least one control sensor placed on the trajectory of the rays and enabling the radiation dose to be measured.
Abstract:
An optical sensor includes a light receiving device disposed in a housing, an exterior filter rotatably mounted to an attachment surface of the housing, and a light intercepting member which rotates along with a rotation of the exterior filter to adjust an amount of light incident on a light receiving surface of the light receiving device. In this optical sensor, the light intercepting member has a rotary shaft fixed at its center, and has a light adjusting mechanism for adjusting the amount of light incident on the light receiving surface of the light receiving device in a range in a direction of rotation around the rotary shaft. Accordingly, the sensitivity of the optical sensor can be arbitrarily adjusted with a high accuracy.
Abstract:
The invention is a pneumatically actuated energy collection device. The device includes a support which has an energy collector thereon. A shutter is slidably attached to the support and can be moved between a first “closed” position and a second “open” position. In its first position, the shutter covers the collector and in its second position, the shutter uncovers the collector. The shutter is biased into one of the positions. A chamber is disposed adjacent to the shutter so that when the chamber is pressurized, the shutter bias is overcome and the shutter is moved between the first position and the second position.
Abstract:
Radiation receiver with a photodetector and a sensor, wherein the sensor receives the radiation intensity, and a shutter arranged before the photodetector is driven in dependence on the detected incident radiation intensity. The incident radiation is supplied to the photodetector via a delay device arranged before the shutter, so that no radiation destroying the photodetector can reach the photodetector, due to the shutter having been driven, and can if necessary be kept away or absorbed by the shutter.
Abstract:
Disclosed is a radiation detector which includes at least one photoconductive detector and a modulator, which modulates in an on-off manner radiation passing to the photoconductive detector from a radiation source. A bias source is connected to one terminal of the photoconductive detector. A first amplifier is connected to the other terminal of the photoconductive detector, and a second amplifier receives an output of the first amplifier. A first phase detector detects the phase of modulation of the radiation source by the modulator and generates a reference signal relating thereto. A switch in the second amplifier changes, in response to the reference signal generated by the first phase detector, the second amplifier between an inverting state and a non-inverting state as the modulator changes the phase of modulation of the radiation.
Abstract:
A device for controlling an amount of light of a lighting unit for use in an endoscope, used to view an image of an object. The device includes a light shield for shielding light generated by a light source and transmitted to the endoscope. A stepping motor drives the light shield for a series of predetermined time intervals. Brightness of the image is detected during each of the time intervals and pulses are generated during each of the time intervals. The number of pulses generated is determined in accordance with a difference between the brightness of the image detected during each of the time intervals and a desired brightness of the image. The pulses generated are used to drive the stepping motor in each of the plurality of time intervals.