Abstract:
In some embodiments, an X-ray target includes a target cap formed of a substrate material and a focal track layer of emitting material, and at least one of the substrate material and the emitting material has a density greater than about 95.0% of theoretical density. In some embodiments, a method of manufacturing an X-ray target includes forming an intermediate target cap form of substrate material and a focal track layer of emitting material, and compacting the intermediate target cap form by application of gas pressure at elevated temperature to form a final target cap form, and at least the substrate material is dense substrate material having a final density greater than an intermediate density or the emitting material is dense emitting material having a final emitting material density greater than an intermediate emitting material density.
Abstract:
A focal track region of an x-ray anode in an example is electrochemically etched. In a further example, an x-ray anode comprises a thermally-compliant focal track region for impingement of electrons from an x-ray cathode to create an x-ray source. The thermally-compliant focal track region comprises a pattern of discrete relative expanses and gaps.
Abstract:
An X-ray target material comprising an oxide-dispersion strengthened Mo (ODS-Mo) alloy. ODS-Mo refers to molybdenum strengthened by a fine dispersion of insoluble oxide particles of one or more of the following compounds: La2O3, Y2O3 and CeO2. ODS—Mo alloy improves upon the prior art by providing higher and more uniform strength and creep resistance over the applicable temperature range of large brazed graphite targets. This, in conjunction with higher-strength graphite, allows the target to spin faster without causing graphite burst, thus providing improvement in peak power. The recrystallization temperature of the fabricated material is high enough to maintain original properties through all target processing, including a very high-temperature braze cycle.
Abstract:
A rotary X-ray anode has a support body and a focal track formed on the support body. The support body and the focal track are produced as a composite by powder metallurgy. The support body is formed from molybdenum or a molybdenum-based alloy and the focal track is formed from tungsten or a tungsten-based alloy. Here, in the conclusively heat-treated rotary X-ray anode, at least one portion of the focal track is located in a non-recrystallized and/or in a partially recrystallized structure.
Abstract:
A rotating x-ray anode has an annular focal track. The surface of the focal track has a directed ground structure. Over the circumference of the annular focal track and over the radial extent of the focal track, the alignment of the ground structure is inclined relative to a tangential reference direction in the respective surface portion in each case by an angle that lies in the range from 15°, including, up to and including 90°. A corresponding method for producing a rotating x-ray anode is described.
Abstract:
A rotating x-ray anode has an annular focal track. The surface of the focal track has a directed ground structure. Over the circumference of the annular focal track and over the radial extent of the focal track, the alignment of the ground structure is inclined relative to a tangential reference direction in the respective surface portion in each case by an angle that lies in the range from 15°, including, up to and including 90°. A corresponding method for producing a rotating x-ray anode is described.
Abstract:
A system and method for x-ray tube components is disclosed. The method of fabricating an x-ray tube component includes providing a powder into an electrically conductive die constructed to have a cavity shaped as the x-ray tube component being fabricated and simultaneously applying a mechanical pressure and an electric field to the die so as to cause sintering of the powder and thereby fabricate the x-ray tube component, wherein the electric field applied to the die directly passes through the die to the powder, so as to generate heat internally within the powder responsive to the applied electric field.
Abstract:
A rotary X-ray anode has a support body and a focal track formed on the support body. The support body and the focal track are produced as a composite by powder metallurgy. The support body is formed from molybdenum or a molybdenum-based alloy and the focal track is formed from tungsten or a tungsten-based alloy. Here, in the conclusively heat-treated rotary X-ray anode, at least one portion of the focal track is located in a non-recrystallized and/or in a partially recrystallized structure.
Abstract:
The present invention refers to hybrid anode disk structures for use in X-ray tubes of the rotary anode type and is concerned more particularly with a novel light weight anode disk structure (RA) which comprises an adhesion promoting protective silicon carbide (SiC) interlayer (SCI) deposited onto a rotary X-ray tube's anode target (AT), wherein the latter may e.g. be made of a carbon-carbon composite substrate (SUB′). Moreover, a manufacturing method for robustly attaching a coating layer (CL) consisting of a high-Z material (e.g. a layer made of a tungsten-rhenium alloy) on the surface of said anode target is provided, whereupon according to said method it may be foreseen to apply a refractory metal overcoating layer (RML), such as given e.g. by a tantalum (Ta), hafnium (Hf), vanadium (V) or rhenium (Re) layer, to the silicon carbide interlayer (SCI) prior to the deposition of the tungsten-rhenium alloy. The invention thus leverages the tendency for cracking of the silicon carbide coated carbon composite substrate (SUB′) during thermal cycling and enhances adhesion of the silicon carbide/refractory metal interlayers to the carbon-carbon composite substrate (SUB′) and focal track coating layer (CL) by an interlocking mechanism. Key aspects of the proposed invention are: a) controlled formation of coating cracks (SC) in the silicon carbide layer (SCI) and b) conformal filling of SiC crack openings with a refractory metal.
Abstract:
An x-ray target pedestal assembly and a method of protecting the x-ray target from breaking down as a result of the extreme heat that is produced when an electron beam is aimed at the target to produce x-rays. The target is submerged in cooling fluid and is rotated by a constant flow of the cooling fluid over and around the target in order to dissipate heat. The fluid is guided by integrated flow diverters in the target cover. The target may also be protectively coated either in its entirety or along the electron beam path in order to further protect it from the heat of the electron beam impact or from breakdown as a result of attack of free radicals or other chemically reactive components of the cooling fluid which are produced in the extreme target environment.