Abstract:
A semiconductor waveguide photodetector with higher light receiving efficiency, wherein single mode light is transmitted as the insensitive light signal. The semiconductor waveguide photodetector comprises a 1null1 multi mode interference (MMI) light waveguide region, and a couple of single mode waveguide regions, each of which is connected with each end of the multi mode region. The length of the multi mode waveguide region is about 100 nullm and the lengths of the single mode waveguide regions are about 10 nullm. The width of multimode waveguide region is 6 nullm and those of single mode waveguide regions are 1.5 nullm.
Abstract:
Methods, and corresponding apparatus, for detecting the occurrence of cracks or fractures are described and claimed. The methods utilize Bragg gratings, and the occurrence of a crack is detected by detecting a change in the reflectance and/or transmittance characteristics of the Bragg grating when the crack is transmitted to it. In addition to merely detecting that a crack has occurred, the methods may also provide information on the position of the fracture along the length of the Bragg grating. This may be achieved by comparing the peak intensities and/or widths of the optical reflectance spectra of the unbroken and broken grating. In certain preferred embodiments the Bragg gratings are interrogated using the combination of a broad band source and an optical spectrum analyser, or a tunable laser source and a broad band detector.
Abstract:
A device and a method for detecting the edge of a recording material, in particular, a printing plate, in an exposer for recording printing originals includes an exposer having an exposure drum holding the plate, and an exposure head moved axially along the drum and focusing exposure beams onto the plate. An optical fiber is let into the drum surface and an illuminating device, moved axially along the drum, radiates light radially into the fiber. A photodetector at the fiber receives the light radiated therein. Covering the light radiated in with the plate is used to detect the plate edge. Counting cycles of a feed drive moving the illuminating device determines an axial position of the edge. Alternatively, light of a light source is radiated axially into the fiber and the light emitted radially by the fiber is received using an optical detector moved by the feed drive.
Abstract:
A structure analysis and defect detection system in which a laser light source provides light via optical fiber to fiber Bragg gratings that change resonant frequency as stresses change in the structure. Light at the resonant frequencies of the fiber Bragg gratings is reflected and light of other frequencies is passed. The respective reflected light is directed through a Fabry-Perot interference filter or a fiber interferometer and detected by a photodetector. If the Fabry-Perot interference filter is used, the intensity of the reflected light indicates current stress at a fiber Bragg grating. If the fiber interferometer is used, a beat frequency due to heterodyne interference in the light indicates current stress at the respective fiber Bragg grating. Comparison data for the respective characteristic in the detected light over time permits stress analysis, and comparison of such data with pre-determined limit values permits defect or failure detection.
Abstract:
A radial power feedback sensor senses the power output of a fiber optic bundle. The fiber optic bundle is arranged generally radially about an axis to carry radiative energy produced by a laser. A spacer is positioned within the fiber optic bundle such that the fiber optic bundle generally surrounds the spacer. The spacer serves to enable the radiative energy to pass therethrough. A photo detector is then disposed adjacent the spacer and is operable to output a signal in response to a measured intensity of the radiative energy passing through the spacer. Accordingly, due to the surrounding of the fiber optic bundle around the photo detector, a greater number of individual photo optic lines are exposed to the photo detector, thereby decreasing the variance between the measure output and the true output of the laser.
Abstract:
Disclosed are an infrared sensor assembly for precisely detecting a location where a heat source is generated and a refrigerator having the infrared sensor. To this end, comprised are an infrared sensor fixed to a supporting frame for receiving infrared rays generated at the heat source; a case having the infrared sensor mounted therein and an infrared filter mounted at an upper surface thereof, the infrared filter transmits only the infrared rays; and a receiving range limiting means mounted between the infrared sensor and the infrared filter in the case for limiting a range of the infrared rays received into the infrared sensor so as to precisely detect a location of the heat source.
Abstract:
An automatically adjustable arrangement for tuning the accumulated chromatic dispersion present in an optical communication system uses a dispersion variation-based measuring arrangement to determine both the magnitude and sign of the accumulated dispersion. A relatively small portion of a received optical signal including an unknown amount of chromatic dispersion is tapped off at an optical receiver and a small amount of additional dispersion is added to the tapped-off signal so that nonlinear detection can be used to determine both the magnitude and sign of the dispersion present in the transmission signal. This information is then fed back to a tunable dispersion compensator to provide the real-time, automatic correction to the dispersion present in the system.
Abstract:
A passive, temperature compensated tunable filter calibration device for a Bragg grating interrogation system. In a first system, a dual-substrate Bragg grating calibration system, the temperature of an array of gratings is estimated using an array of gratings bonded to a common host substrate and a single grating bonded to a material with a different coefficient of thermal expansion. Changes in a common temperature of the substrates is measured by monitoring the difference between shifts of grating wavelength. As a filter voltage is scanned from its lowest to its highest voltage, the voltages are recorded. The second lowest wavelength corresponds to the grating attached to the differing substrate. The voltages are used to calculate a voltage-to-wavelength function for the scanning range of the filter. To compensate for variations in a calibration curve and temperature variations of the calibration array, the temperature is estimated and function re-calculated at every pass of the scanning filter. In a second system, a hydrogen-cyanide wavelength reference absorption cell that absorbs light at discrete wavelengths corresponding to the molecular vibrational mode frequencies of the gas. With a broadband optical light input to the cell, the output displays the spectrum of the input with several narrow dips in the spectra corresponding to the absorption lines of the cell. A first photodetector sees the transmission spectrum and a second sees the reflections from Bragg gratings in a sensing array. The filter drive voltages that coincide with the dips of the transmission spectrum are used to calibrate the voltage-to-wavelength function of the scanning filter. In this system there is no temperature compensation step as the absorption lines are not sensitive to temperature.
Abstract:
A fiber grating environmental sensing system is described that has the ability to measure strain, vibration, humidity and water content. Fiber gratings are used to measure axial strain to accomplish these goals. An approach is described that uses matched fiber grating sensors and filters to allow for thermal compensation greatly reducing one of the key performance issues facing these systems. The system may be deployed in such applications as roadways and paved surfaces, bridges, buildings and aircraft and spacecraft. Means are described to implement transducers optimized for specific environmental measurements as well as means to demodulate the fiber grating sensors.
Abstract:
A multimode remote vibration sensor. The inventive sensor (8) includes a mode locked laser transmitter (10); a receiver (30) adapted to detect signals transmitted by said laser (10) and reflected by an object (22) and a signal processor (40) for analyzing the signals and providing an indication with respect to a vibration of the object (22). The laser is particularly novel as a vibration sensor transmitter inasmuch as it includes a mode locking mechanism. The mode locking mechanism causes the laser to output energy at all modes within the gain profile in phase with one another. The result is a series of tight clean pulses which may be used for range resolved vibration and one-dimensional (high resolution ranging) applications. In a particular embodiment, the present teachings are implemented in a multifunctional laser which, in its operational mode, outputs a mode locked beam for vibration sensing. In the illustrative embodiment, the laser is an erbium or erbium, ytterbium-doped, fiber pumped laser and the mode locking mechanism is a passive quantum well absorber crystal or an active acoustic crystal mounted in the laser cavity. In any event, the return signals are received and processed to extract vibration, range-resolved vibration, one-dimensional profiling or three-dimensional imaging information. To this end, the signal processor includes a range de-multiplexer for organizing the return signals into range bins. For each range bin, the signal processor further includes means for extracting a signal representing vibration for each range bin and a signal representing intensity for each range bin.