Abstract:
An optical system may include an optical transmitter or an optical receiver. The optical transmitter may include a laser to provide an input signal, a first digital signal processor (DSP) to receive a data signal, provide non-rotated and rotated symbols corresponding to the data signal, and provide digital signals corresponding to the non-rotated and the rotated symbols to cause one or more digital to analog converts to convert the digital signals to analog signals. The optical transmitter may further provide a modified 5 quadrature amplitude modulation (5QAM) signal based on the analog signals and the input signal. A constellation map of the modified 5QAM signal may include all constellation points of a 16QAM signal. The optical receiver may include a second DSP to receive components associated with the 5QAM signal, filter the components, reduce phase noise of the 5QAM signal, and provide data associated with the 5QAM signal.
Abstract:
The present disclosure relates to a method for estimating chromatic dispersion of a received optical signal (Rx(f)), the method comprising: scanning the received optical signal (Rx(f)) through a number (M) of chromatic dispersion compensation filters in a chromatic dispersion filter range (Dmin . . . Dmax) between a first chromatic dispersion value (Dmin) and a second chromatic dispersion value (Dmax) with a resolution (ΔD) determined by the chromatic dispersion filter range (Dmin . . . Dmax) normalized by the number (M) of chromatic dispersion compensation filters to obtain filtered samples (Rx, D(f)) of the received optical signal (Rx(f)); and determining a correlation function (CD(τ,B)) indicating an estimate of the chromatic dispersion by correlating the filtered samples (Rx, D(f)) of the received optical signal (Rx(f)) with respect to frequency shifts (τ) over a correlation bandwidth (B), wherein the correlation bandwidth (B), the chromatic dispersion filter range (Dmin . . . Dmax) and the resolution (ΔD) are iteratively adapted according to an optimization criterion.
Abstract:
An optical microphone includes: an acousto-optic medium section having a pair of principal surfaces and at least one lateral surface provided therebetween; a restraint section which is in contact with the at least one lateral surface for preventing a shape change of the acousto-optic medium section; and a light emitting section for emitting a light wave so as to propagate through the acousto-optic medium section between the pair of principal surfaces. The pair of principal surfaces are in contact with an environmental fluid through which an acoustic wave to be detected is propagating and are capable of freely vibrating, and an optical path length variation of a light wave propagating through the acousto-optic medium section, which is caused by the acoustic wave that comes into the acousto-optic medium section from at least one of the pair of principal surfaces and propagates through the acousto-optic medium section, is detected.
Abstract:
Semiconductor apparatuses having optical connections between a memory controller and a memory module are provided. A semiconductor apparatus includes a memory controller, at least one socket configured to receive a memory module, and a first optical-electrical module. A second optical-electrical module is mounted in the socket and optically coupled to the first optical-electrical module via at least one optical channel.
Abstract:
An optical system may include: a demultiplexer to receive an optical signal and to demultiplex the optical signal into a plurality of optical channels; a detector circuit to: receive the plurality of optical channels, and identify a predetermined channel identification trace tone frequency for an optical channel of the plurality of optical channels; and a receiver to: receive the optical channel with the identified predetermined channel identification trace tone frequency from the detector circuit, and process the optical channel.
Abstract:
An information communication method that enables communication between various devices includes: transmitting position information indicating a position of a terminal device; obtaining one or more sets of identification information of respective one or more devices and one or more sets of service information respectively associated with the one or more sets of identification information, and holding the one or more sets of identification information and the one or more sets of service information; setting an exposure time of an image sensor; obtaining a bright line image including a plurality of bright lines; obtaining identification information of a subject, by demodulating data specified by a pattern of the plurality of bright lines included in the obtained bright line image; and selecting service information associated with the identification information of the subject from the held one or more sets of service information, and presenting the service information to a user.
Abstract:
An optical communication system provides coherent optical transmission for metro applications. Relative to conventional solutions, the optical communication system can be implemented with reduced cost and can operate with reduced power consumption, while maintaining high data rate performance (e.g., 100 G). Furthermore, a programmable transceiver enables compatibility with a range of different types of optical networks having varying performance and power tradeoffs. In one embodiment, the optical communication system uses 100 Gb/s dual-polarization 16-point quadrature amplitude modulation (DP-16QAM) with non-linear pre-compensation of Indium Phosphide (InP) optics for low power consumption.
Abstract:
A method of controlling consumer devices using an infrared dongle coupled to a mobile device includes receiving power for the infrared dongle from the mobile device. The infrared dongle includes an infrared transmitter coupled to a microcontroller. One or more instructions are received in the microcontroller from the mobile device. The received one or more instructions are generated from codes stored in a memory of the mobile device. In response to the receiving, one or more infrared signals are transmitted via the infrared transmitter to at least one of the consumer devices.
Abstract:
Current optical networks are engineered to handle amplifier noise and chromatic dispersion. Polarization mode dispersion occurs in optical networks due splitting of the light energy of a pulse propagating in a fiber into two modes. Compensating for polarization mode dispersion is a difficult and expensive task and hence only few commercial systems have been deployed to deal with this issue. A polarization mode dispersion compensation module according to an example embodiment of the present invention compensates for polarization mode dispersion by determining a performance metric related to an error rate of an optical signal in at least one polarization mode in a filtered state. Based on the performance metric, a control vector is determined to control the optical signal in the at least one polarization mode in the filtered state. The control vector is then applied to a polarization effecting device to compensate for polarization mode dispersion.
Abstract:
An optical transmitter includes: a modulator driver to generate a drive signal from an input signal; a modulator to generate a modulated optical signal according to the drive signal; an amplitude detector to detect an input amplitude representative of an amplitude of the input signal; and a controller to generate a waveform control signal according to the input amplitude detected by the amplitude detector. The modulator driver controls a waveform of the drive signal according to the waveform control signal.