Abstract:
An operational amplifier circuit including a main circuit, a compensation capacitor, a power circuit, and a set of switches is disclosed. The main circuit has an output terminal. The compensation capacitor has a first end connected to an internal node of the main circuit and a second end connected to the output terminal of the main circuit. The power circuit provides a current or a voltage as predetermined. The set of switches connects the power circuit to the compensation capacitor. When the main circuit is not in an output state, the set of switches is switched to allow the power circuit to provide the current or voltage to the compensation capacitor. When the main circuit is in the output state, the set of switches is switched to disconnect the power circuit from the compensation capacitor and allow the main circuit to return to an output circuit state and operate normally.
Abstract:
A buffer circuit, a display module, and a display driving method are disclosed. The buffer circuit comprises a positive polarity buffer, a negative polarity buffer. The positive polarity buffer receives a first supply voltage and a second supply voltage to output a positive reference voltage to a positive resistance string. The second supply voltage is less than the first supply voltage. The negative polarity buffer receives the second supply voltage and a third supply voltage to output a negative reference voltage to a negative resistance string. The third supply voltage is less than the second supply voltage.
Abstract:
An amplifier circuit and an operation method thereof are provided. The amplifier circuit includes two stages of amplifiers. When the amplifier circuit is operated in a high gain mode, the two stages of amplifiers are operated normally to provide high gain. When the amplifier circuit is operated in a low gain mode, the second stage of amplifier is turned off, and the first stage of amplifier is coupled to output terminals of the amplifier circuit through signal isolation elements so as to form a single stage of amplifier. Therefore, the amplifier circuit can change the total gain value thereof according to a requirement of gain.
Abstract:
An automatic-focusing imaging capture device includes a first imaging capture module for generating a clue imaging information according to an object and a second imaging capture module for determining whether or not to re-focus for generating an imaging information corresponding to the object according to the clue imaging information; wherein a first frame rate of the first imaging capture module is higher than a second frame rate of the second imaging capture module, and the clue imaging information includes an object-distance information and a depth-of-field information.
Abstract:
A transmission method for a display device is provided. The display device includes a one-to-many timing controller and a plurality of source drivers. The transmission method includes determining whether the plurality of source drivers being operated in different operational modes are switched on or off according to a command signal, to receive a display information of the one-to-many timing controller. The display information comprises at least a first control triggering signal, a first control signal, a first display information triggering signal, a first display signal, a second display information triggering signal and a second display signal, and the command signal is an internal setting signal or an external setting signal.
Abstract:
A chip package structure includes a package body, a first lead and a second lead. Elements embedded inside the package body include a core circuit having at least one first connection terminal, at least one ESD protection circuit having at least one second connection terminal, at least one third connection terminal and at least one interconnection structure. The interconnection structure is electrically connected to the second connection terminal and the third connection terminal. The first lead on the package body is electrically connected to the second connection terminal and an external circuit. The second lead on the package body electrically connects the first connection terminal and the third connection terminal. The second lead and the first lead are separate in structure.
Abstract:
An image dithering module is provided. The image dithering module includes a plurality of data processing channels. The data processing channels respectively process image data of each pixel or sub-pixel in an image frame. Each of the data processing channels includes a bit processing unit and a bit truncator unit. The bit processing unit mixes first pixel data with random data to generate second pixel data. The bit truncator unit truncates partial bits of the second pixel data to generate third pixel data.
Abstract:
An auto-color-correction method for an image capturing device includes calculating a plurality color temperatures of a plurality of pixels in an image; calculating a number of pixels of the plurality of pixels located in a first color temperature range as a first number and a number of pixels of the plurality of pixels located in a second color temperature range as a second number; generating a color temperature weight according to the first number and the second number; and generating at least one correction coefficient according to the color temperature weight, at least one first coefficient corresponding to the first color temperature range and at least one second coefficient corresponding to the second color temperature range.
Abstract:
Method and apparatus for processing edges in an image are provided. The method in an embodiment includes the following steps. With respect to a cross-shaped patterned centered at a target pixel of an input image, a first-direction gradient along a first direction and a second-direction gradient along a second direction are calculated. According to the first-direction and second-direction gradients, it is determined whether to compensate the target pixel based on pixel values of a first plurality of pixels along the second direction or pixel values of a second plurality of pixels along the first direction within the cross-shaped pattern, or to output a pixel value of the target pixel.
Abstract:
A noise estimation apparatus for calculating a noise estimation value of a frame of an image is provided. The noise estimation apparatus includes a distribution calculation unit, a variance calculation unit, a distribution curve generation module and a noise estimation unit. The distribution calculation unit generates a pixel distribution according to multiple pixel data of an ith block of the frame and multiple previous pixel data of the ith block of a previous frame. The variance calculation unit combines the pixel data and the previous pixel data to generate a variance value. The curve distribution generation module generates a curve distribution according to the variance value, and compares the pixel distribution with the curve distribution to generate a weighting value. The noise estimation unit outputs the noise estimation value according to the weighting value and the variance value corresponding to each of the blocks of the frame.