Abstract:
Disclosed are a wireless communication base station device and a division number determination method that improves the frequency diversity effect while maintaining channel estimation accuracy regardless of the number of divisions in the frequency domain of a transmission signal from a wireless communication terminal device. A determination unit (117) determines the number of divisions in the frequency domain of a transmission signal from a wireless communication terminal device. Here, the determination unit (117) increases the number of divisions in the frequency domain of the transmission signal from the wireless communication terminal device as the number of pilot blocks included in the transmission signal increases. In addition, a scheduling unit (118) schedules allocation to the frequency resources of the divided transmission signal according to the number of divisions determined by the determination unit (117).
Abstract:
A MIMO transmitting apparatus that achieves a flexible control in accordance with variation of a propagation environment to reduce the number of retransmissions is disclosed. An intra-code-word interleaver performs an interleave process on bits included in symbols to be simultaneously transmitted from a plurality of transmitting antennas. When performing the intra-code-word interleave process, the intra-code-word interleaver performs the interleave process in accordance with an interleave pattern notified from an interleave pattern table. A counter counts a number of retransmission requests, and outputs the number of retransmission requests to the interleave pattern table. The interleave pattern table stores interleave patterns to be used for the intra-code-word interleave process for the respective numbers of retransmission requests, and notifies the intra-code-word interleaver of an interleave pattern in accordance with the number of retransmission requests.
Abstract:
It is possible to prevent lowering of a throughput of a radio communication system even when propagation path environments of an uplink line and downlink line are asymmetric. A maximum proper value calculation unit (115) calculates a maximum proper value from a channel matrix. A maximum proper value comparison unit (116) compares the maximum proper value with a maximum proper value of the downlink line reported separately from a base station. According to the comparison result obtained by the maximum proper value comparison unit (116), a proper mode initiative instruction unit (117) decides to pass the proper mode initiative to a communication partner or to the local device. When the initiative is to be passed to the local device, this fact is reported to a proper bam correction unit (118). When the proper beam correction unit (118) gets the proper mode initiative, the proper beam correction unit (118) corrects the correlation matrix by using the proper values of both of the downlink line and the uplink line and instructs a directivity forming unit (103) to form a proper beam according to the correlation matrix after the correction.
Abstract:
There are disclosed a random access method for establishing an individual channel between a radio communication terminal device and a base station device in a short time and a radio communication terminal device executing the random access method. In this device, in step ST320, a RACH sub-channel allocation unit (211) allocates a transmission packet inputted from a replication unit (202) to an arbitrary sub-carrier at the RACH arbitrary time slot at random. In step ST330, an allocation unit (210) judges whether an overlap is generated in the allocation result obtained by the RACH sub-channel allocation unit (211). When the allocation unit (210) judges that an overlap is generated in the allocation result, the allocation unit (210) causes one of the RACH sub-channel allocation units (211) which has caused the overlap to again perform allocation of step ST320. On the other hand, when judgment is made that no overlap is generated in the allocation result, step ST340 is executed.
Abstract:
There is provided a mobile station device capable of effectively performing interference suppression symbol synthesis while suppressing the lowering of the transfer rate when using the repetition technique in multi-carrier communication. In the mobile station device (100), when the interference level exceeds a threshold value, a switching control unit (110) controls a switch (109) to connect a P/S unit (106) to a weight multiplication unit (113) and controls a switch (111) to connect a channel estimation unit (108) to a weight calculation unit (112). The weight calculation unit (112) calculates an interference suppression weight based on MMSE from a pilot symbol and a channel estimation value. The weight multiplication unit (113) multiplies a data symbol by the interference suppression weight. A synthesis unit (114) synthesizes the data symbol multiplied by the interference suppression weight in repetition unit.
Abstract:
A transmission apparatus and method updates a communication mode selection table that updates a communication mode selection table correctly and selects an optimal MCS according to an actual channel condition. A buffer temporarily stores calibration data to be transmitted for updating a table. A scheduler performs scheduling of data to be transmitted based on a CIR on a downlink reported from a plurality of communication terminal apparatuses. When there is no data to be transmitted, the scheduler sends calibration data from the buffer. When calibration data is transmitted as a result of the scheduling, the scheduler notifies an address information generation section of the communication terminal apparatus to which the calibration data is transmitted. In one mode, first data is transmitted from a first communication apparatus to another communication apparatus, the first communication apparatus receives from the other communication apparatus, information on an error rate when the other communication apparatus receives the first data; and the first communication apparatus transmits second data to the other communication apparatus based on a communication mode determined using the information on the error rate.
Abstract:
A radio receiver apparatus and a radio transmitter apparatus wherein the energy loss caused by addition of GI is suppressed, while the reception quality is improved. A signal having been subjected to an IFFT process is repetitively transmitted N times with a length of one OFDM symbol interval. At a receiver apparatus receiving the transmitted signals, a leading data extracting part (207) extracts, from the leading data portions of the direct waves of the received signals, portions that are not interfered with by temporally adjacent data. A combing part (209) combines the received signals in such a manner that align the rear end of each repetitively transmitted data portion except the leading data portion with the rear end of the leading data portion extracted by the leading data extracting part (207). The combined signal is then subjected to an FFT process in an FFT part (210).
Abstract:
A wireless communication method capable of preventing reduction of the throughput. According to this wireless communication method, in a frame (2), a relay station (1) decides that the amount of delay to be Δt2 because the modulation scheme of a relayed signal is 16 QAM, while another relay station (2) decides that the delay amount be Δt4 because the modulation scheme of a relayed signal is QPSK. The relay station (1) transmits, at Δt2 of the frame (2), the relayed signal, the modulation scheme of which is 16 QAM, to abase station. On the other hand, the relay station (2) detects, by Δt4, the fact that the relay station (1) transmitted the relayed signal at Δt2, and estimates, from the detected fact, that the modulation scheme used by the relay station (1) was 16 QAM. The relay station (2) then updates its modulation scheme from the initially established modulation scheme of QPSK to the same modulation scheme of 16 QAM as the relay station (1), and modulates the relayed signal by use of 16 QAM and then transmits it to the base station.
Abstract:
Disclosed is a wireless receiver and feedback method for reducing the amount of CQI feedback in a MIMO channel. A channel estimation unit (103) uses a received pilot signal to estimate the channel matrix for each RB between respective transceiver antennas, and then performs eigenvalue decomposition of the estimated channel matrix to find eigenvalues and eigenvectors. A feedback data generator (104) is provided with a feedback bit table that correlates the number of quantized bits for the averaged CQI to be transmitted for each eigenvalue and the number of quantized bits for the CQI in each RB, and then reduces the number of quantized bits for the averaged CQI Xk commensurate with the magnitude of the eigenvalue number k. The feedback data generator (104) averages eigenvalues found by the channel estimator (103) for each RB, converts the averaged eigenvalue to a CQI for each eigenvalue number, and generates feedback data from the CQI for each eigenvalue with the number of quantized bits according to the feedback table.
Abstract:
There are provided a communication device, a base station, a communication system, and a communication method that make it possible to yield a diversity effect by cooperative relay without involvement of disproportionateness in data received by an eNB even when one of parties has unsuccessfully exchanged data. After received an ACK signal from a repeater 1, a repeater 2 which has transmitted a NACK signal in procedure 7 transmits data S2 to the eNB by use of its own resource, thereby making its own resource available for the repeater 1 (the repeater 2 does not use its own resource, and the repeater 1 uses the resource of the repeater 2). In procedures 8, the repeater 1 has received the NACK signal from the repeater 2 and subsequently transmits data S1 to the eNB by use of its own resource. Subsequently, the repeater 1 which has received the MACK signal in procedure 9 determines that the resource of the repeater 2 is available and transmits data P1 to the eNB by use of the resource of the repeater 2. In procedure 10, the repeater 1 transmits previously-generated data P2 to the eNB by use of its own resource.