Abstract:
A hydraulic brake system is configured such that a pressure of a working fluid from a high-pressure-source device is adjusted by electromagnetic pressure-increase and pressure-decrease linear valves and such that a brake device generates a braking force having a magnitude that depends on the pressure adjusted by the linear valves, wherein the following controls are selectively executable, as a control of the energizing currents supplied to the linear valves, a feedback control based on a difference between an actual braking-force index and a target braking-force index; and a feedforward control based on the target braking-force index executed by placing each valve in a valve equilibrium state, wherein, in the feedforward control, an energizing current is supplied to at least one of the two linear valves, the energizing current being larger than that according to a preset relationship between a braking-force index and an energizing current in the valve equilibrium state.
Abstract:
A rotating pumping apparatus is provided which may be employed in an automotive brake system. The rotating pumping apparatus includes a sealing member and a pressure member. The sealing member is disposed around a pump drive shaft. The pressure member includes a plate spring, a first rotation stopper, and a second rotation stopper. The first rotation stopper serves to stop the pressure member from rotating following rotation of the pump drive shaft. The second rotation stopper engages the seal ring to stop the sealing member from rotating following the rotation of the pump drive shaft. The plate spring works to elastically press the sealing member against a stopper wall of a pump casing to stop the sealing member from moving in an axial direction of the pump drive shaft.
Abstract:
There is provided an electric braking device for a vehicle, which includes a brake caliper which is provided to a wheel, a pressing member which is provided to the brake caliper and is driven to press a friction member to a rotary member fixed to the wheel, an electric motor which is a power source to drive the pressing member, an electric power/signal line which supplies electric power to the electric motor or allows a first electric circuit provided in a vehicle body to communicate with a second electric circuit provided in the brake caliper, and a connector which relays the electric power line. The connector includes a terminal joining portion which joins one terminal and another terminal to each other, and the one terminal and the another terminal are made of metal. The terminal joining portion is positioned inside the brake caliper.
Abstract:
A braking device for a vehicle is provided which includes a power fail-safe mechanism which works to create frictional braking force at a wheel of the vehicle in the event of loss of electric power. The braking device is equipped with an electromagnetic valve which is of a normally closed type. In the event of loss of electric power in the braking system, the electromagnetic valve is closed to block fluid communication between a hydraulic booster and a brake fluid reservoir, so that a stroke chamber in the hydraulic booster is hermetically closed. This enables the pressure in a master cylinder to rise in response to depression of a brake pedal to develop the frictional braking force.
Abstract:
A braking device for a vehicle is provided which is equipped with a hydraulic booster. The hydraulic booster includes a master cylinder, a braking simulator, and an input piston. The input piston is disposed in the master cylinder in connection with a brake actuating member such as a brake pedal and is moved in response to a braking effort applied to the brake actuating member to drive a spool valve which switches among a pressure-reducing mode, a pressure-increasing mode, and a pressure-holding mode. The braking simulator works to urge the input piston rearward and is disposed inside a cylindrical cavity of the master cylinder of the hydraulic booster. This layout improves the mountability of the braking device in vehicles.
Abstract:
Provided is a negative pressure type booster device, in which a diaphragm of a movable partition wall has, in a penetration portion through which a tie rod bolt hermetically penetrates, a tubular guide portion that abuts against an annular flange portion provided on the tie rod bolt during forward movement of a power piston, and an annular sealing portion that is provided in the rear of the guide portion to block communication between a negative pressure chamber and a variable pressure chamber. The guide portion is provided with a communication portion through which a negative pressure chamber side space exposed by the front surface of the sealing portion communicates with the negative pressure chamber, even in a state in which the guide portion abuts against the annular flange portion.
Abstract:
A pad pressing spring which is mounted on a pad of a disc brake by causing a pinching portion to pinch a pad back plate is configured as follows. An elastic arm which presses the pad in a disc rotor normal-rotating direction continuously extends from a base end side of the pinching portion, and the elastic arm has a configuration in which, when a load exceeding a predetermined value is applied in a direction opposite to a direction in which a pad is pressed, a tip end side of the elastic arm comes into contact with a lateral surface of the pad back plate or the pinching portion, and thus a spring constant of the pad pressing spring increases compared to a spring constant in a state where a load exceeding the predetermined value is not applied.
Abstract:
A rotating pumping apparatus is provided which may be employed in an automotive brake system. The rotating pumping apparatus includes a sealing member and an oil seal which are disposed around a pump drive shaft, and lubricating grease disposed between the oil seal and the pump drive shaft. The sealing member is made up of a resinous ring and a rubber cup. The sealing member has formed therein a labyrinthine flow path which extends from the resinous ring to the rubber cup. The labyrinthine flow path is designed to permit fluid to flow therethrough and create the resistance to flow of the lubricating grease to avoid leakage of the grease outside the sealing member.
Abstract:
A hydraulic braking system has a brake actuator including hydraulic pumps that generate a W/C pressure by sucking and discharging a brake fluid from a master reservoir, and suck the brake fluid discharged from the W/C side for decompressing a W/C pressure during anti-lock braking. Further, open-when-self-priming valves that suck the brake fluid by themselves from the master reservoir in the hydraulic pumps are provided. Further, an accumulator is provided in a pipe connecting the hydraulic pumps and the W/C, and an accumulation to the accumulator is performed by the hydraulic pumps. Then, communication and cut-off of a pipe connected to the accumulator are controlled by lower limit indicating valves.
Abstract:
A rotating pump includes an outer rotor and an inner rotor. The inner and outer rotors are rotated by a drive shaft between a first side plate and a second side plate to pump put fluid. The first side plate faces the inner and outer rotors and has a first surface and a second surface. The first surface is inclined to an axial direction of the drive shaft to create a wedge-shaped gap between itself and one of the inner and outer rotor. The second surface extends more parallel to a direction perpendicular to the axis direction of the drive shaft than the first surface does. The geometric configurations of the first and second surfaces serve to minimize the leakage of the brake fluid without sacrificing a reduction in resistance to sliding motion of the inner rotor and the outer rotor on the second side plate.