Abstract:
A method for mapping an input grayscale into an output luminance includes selecting a first reference grayscale, a first reference luminance, a second reference grayscale and a second reference luminance according to an input grayscale, generating a middle reference grayscale and a middle luminance, replacing a value of the first or second reference grayscale by a value of the middle reference grayscale, and replacing a value of the first or second reference luminance by a value of the middle luminance according to the middle reference grayscale and the input grayscale, and generating an output luminance by computing a linear transformation equation.
Abstract:
A disparity calculating method includes generating an energy matrix according to a first image-block and a second image-block, wherein the energy matrix includes a plurality of energies of a plurality of pixels corresponding to a plurality of disparity candidates; setting the energy corresponding to a starting pixel of the plurality of pixels and a specified disparity candidate of the plurality of disparity candidates as a first predetermined value and setting the energies corresponding to the starting pixel and other disparity candidates of the plurality of disparity candidates as a second predetermined value, wherein the second predetermined value is greater than the first predetermined value; generating a path matrix according to the energy matrix; and determining a plurality of disparities of the plurality of pixels sequentially from an ending pixels of the plurality of pixels, wherein the disparity of the ending pixel is set as a third predetermined value.
Abstract:
A source driver and a method for determining polarity of pixel voltage thereof are provided. The source driver includes a data register unit, a plurality of data groups and a plurality of polarity determining units. The data register unit receives an image data signal and provides a plurality of display data. The data groups have at least two data channels respectively. The data channels are coupled to the data register unit to receive the corresponding display data and provide a plurality of pixel voltages. The polarity determining units are respectively coupled to the data channels corresponding to different data groups, and each of the polarity determining units determines whether to invert polarities of a part of the pixel voltages provided by the coupled data channels according to the received display data of the coupled data channels and previous display data corresponding to the received display data.
Abstract:
A current source for quickly adjusting an output current includes a constant current generation module, coupled to a control node, for generating a predefined current flowing through the control node in order to determine a voltage of the control node; a capacitor, coupled to an output terminal of the current source; a current variation detection module, coupled between the control node and the capacitor, for generating a variation on the voltage of the control node via the capacitor when the output terminal of the current source receives an instant current variation; and a trans-conductance amplifier, coupled between the control node and the output terminal, for changing a magnitude of the output current of the output terminal when the variation on the voltage of the control node is generated.
Abstract:
A method for initializing a NAND flash serving as a booting device includes the following steps. A NAND flash storing a boot table being identified by an identification (ID) of the NAND flash is provided. A current block of the NAND flash is searched to read the boot table. Configuration information of the boot table is read to initialize the NAND flash.
Abstract:
An image processing method for adjusting the luminance and contrast of an input image comprises the following steps. First, local spatial luminance statistics is performed on the first pixels of the input image to generate a luminance image including a plurality of second pixels. Then, from a preset mapping curve group comprising a plurality of smooth mapping curves, a corresponding smooth mapping curve is selected for each of the second pixels according to an adjusting function. Next, the pixel values of the second pixels are adjusted according to the corresponding smooth mapping curves to generate an adjusted image.
Abstract:
An image sensor including a plurality of sensing pixels, a plurality of micro-lenses disposed on the sensing pixels and a plurality of first light distributing elements disposed between the sensing pixels and the micro-lenses is provided. Each of the first light distributing elements includes a first refractive index pattern and a second refractive index pattern surrounding the first refractive index pattern. The refractive index of the first refractive index pattern is larger than the refractive index of the second refractive index pattern.
Abstract:
An operational amplifier comprises a first metal-oxide-semiconductor field effect transistor (MOSFET), comprising a first drain, a first gate and a first source; a second MOSFET, comprising a second drain, a second gate and a second source, the second source coupled to the first source of the first MOSFET; and a bias source, coupled between a first specific level and the first source of the first MOSFET and the second source of the second MOSFET; wherein the first MOSFET and the second MOSFET are depletion-type.
Abstract:
A source driver apparatus configured to drive a display panel is provided. The source driver apparatus includes a data operation circuit and a pixel driving circuit. The data operation circuit is configured to receive pixel data and perform a polarity determination operation on the pixel data to determine a polarity distribution information of pixels on the display panel. The pixel driving circuit is coupled to the data operation circuit. The pixel driving circuit is configured to drive the display panel according to the pixel data and the polarity distribution information. Furthermore, a driving method of the display panel is also provided.
Abstract:
A gate driving circuit and a driving method thereof are provided. The gate driving circuit includes a control signal generator and at least one gate channel set, each of the at least one gate channel set includes a plurality of gate channels, and the plurality of gate channels share a level shifter. The driving method includes generating a plurality of first control signals and a plurality of second control signals according to a gate driver start pulse, and determining that one of the gate channels uses the level shifter during a time period according to the plurality of first control signals and the plurality of second control signals. Therefore, the number of the level shifters can be decreased.