Abstract:
An apparatus for storing fluid and dispensing multiple portions of the stored fluid has a container defining a variable-volume storage chamber; a dispensing valve including a valve inlet coupled in fluid communication with the variable-volume storage chamber, and an elastic valve member in fluid communication with the valve inlet and defining a normally-closed valve opening; a manually engageable actuator; and a pump including a compressible member defining a compression chamber coupled in fluid communication with the variable-volume storage chamber. Multiple portions of the stored fluid are hermetically sealed in the variable-volume storage chamber. The actuator is manually engageable and movable between (i) a first position wherein the compression chamber defines a first volume, and (ii) a second position wherein the compression chamber defines a second volume less than the first volume. In the second position the fluid in the compression chamber exceeds a valve opening pressure and, in turn, moves the elastic valve member between (i) a normally closed position hermetically sealing the one-way valve and variable-volume storage chamber with respect to ambient atmosphere, and (ii) an open position permitting fluid flow through the valve opening.
Abstract:
A sterile enclosure contains a transfer module defining a window. A port covers the window to maintain the inside of the enclosure as a sealed and sterile environment. A sliding, heated cutting element mounted on the port serves to sterilize and sever a portion of a sterile transfer bag assembly attached to the port. Preferably, the excised portion of the sterile transfer bag assembly is affixed to the port when the port opens. The sliding cutting element remains extended and heated to prevent contamination when the port is open. Further, a heating element is mounted about the window in order to sterilize around the opening when the port is open.
Abstract:
A needle has a hollow shaft, a tip formed at one end of the shaft, one or more ports in fluid communication with the interior of the hollow shaft, and a closure. The closure and/or the shaft is movable between (i) a first position wherein the closure closes the port(s), and (ii) a second position opening the port(s).
Abstract:
An assembly includes a support and drive assembly, a first structure and a second structure. The first structure is in operable communication with and supported by the support and drive assembly. The first structure includes at least one filling or needle assembly and is adjustable to receive a plurality of filling or needle assemblies. The second structure is supported by the support and drive assembly. The second structure includes at least one seal assembly and is adjustable to receive a plurality of seal assemblies. A method includes determining a number of containers or vials that are to be filled concurrently and adjusting an assembly to include at least one filling or needle assembly and at least one seal assembly. A number of the filling or needle assemblies and the seal assemblies equals the number of containers or vials.
Abstract:
A flexible pouch and valve assembly is provided for aseptically storing a substance, dispensing multiple portions of the stored substance therefrom, and maintaining substance remaining in the pouch in an aseptic condition sealed with respect to ambient atmosphere. The flexible pouch and valve assembly are receivable within a relatively rigid housing, and are adapted to cooperate with a pump for pumping discrete portions of substance from the pouch and through the one-way valve to dispense the substance therefrom. The assembly comprises a flexible pouch defining therein a variable-volume storage chamber sealed with respect to the ambient atmosphere for aseptically storing therein multiple portions of the substance. A one-way valve of the assembly includes a valve body defining an axially-extending valve seat and at least one flow aperture extending through the valve body and/or the valve seat.
Abstract:
A dispenser for holding multiple doses of fluids or other substances, and for dispensing the substances, has a vial, a flexible bladder received within the vial, and a variable volume storage chamber formed between the bladder and vial. A filling valve is coupled in fluid communication with the storage chamber and defines (1) a normally closed, fluid-tight position hermetically sealing the storage chamber from the ambient atmosphere, and (2) an open position allowing the passage of fluid through the valve both to evacuate the storage chamber and to introduce fluid through the valve to fill the storage chamber. A pump is coupled in fluid communication with the storage chamber for pumping fluids out of the storage chamber. A dispensing valve is coupled in fluid communication with the pump and defines (1) a normally closed, fluid-tight position preventing the passage of fluid out of the dispenser, and (2) an open position for dispensing pumped fluid therethrough. The sealed, empty dispenser is sterilized, such as by applying gamma radiation thereto. Then, the sterilized, sealed, empty dispenser is filled with fluid by engaging the filling valve with an evacuating/dispensing member to evacuate the storage chamber, and by introducing fluid from the filling member through the open filling valve and into the storage chamber. The filling member is withdrawn from the valve, and a spring moves the valve to a closed position to hermetically seal the fluid within the dispenser.
Abstract:
A stopper and container body are molded in the same molding machine. An assembly device, such as a pick and place robot, transfers the stopper from one mold cavity into the opening in the container body located within another mold cavity, or vice versa, to assemble the stopper and container body. Then, the assembled container body and stopper are removed from the molding machine and transported to a needle filling and laser resealing station for filling and laser resealing. A laminar flow source directs a substantially laminar flow of air or sterile gas over the mold surfaces, stoppers and container bodies, and assembly device, to prevent contamination during assembly.
Abstract:
A device and method are provided for needle penetrating and filling a chamber with a predetermined substance, and laser resealing a resulting needle hole in the device. A needle penetrable and laser resealable portion of the device is pierceable with a needle to form a needle aperture therethrough to fill the chamber through the needle, and is laser resealable to hermetically seal the needle aperture by applying laser radiation at a predetermined wavelength and power thereto. The needle penetrable and laser resealable portion defines a predetermined wall thickness in an axial direction thereof, and includes a thermoplastic that substantially prevents the formation of particles released into the chamber from the needle penetrable and laser resealable portion during penetration by and withdrawal of the needle. The thermoplastic includes a predetermined amount of pigment that allows the thermoplastic to substantially absorb laser radiation at the predetermined wavelength, substantially prevent the passage of radiation through the predetermined wall thickness thereof, and hermetically seal a needle aperture formed in the needle penetration region thereof in a predetermined time period.
Abstract:
A device and related method are provided for lyophilizing a substance within the device and storing therein the lyophilized substance. The device is penetrable by a needle for filling the device with the substance to be lyophilized, and a resulting needle hole in the device is laser resealable by transmitting thereon laser radiation from a laser source. The device defines a chamber for receiving therein the substance to be lyophilized. A needle penetrable and laser resealable portion of the device is pierceable with a needle to form a needle aperture therethrough to fill the chamber with the substance to be lyophilized through the needle, and is laser resealable to hermetically seal the needle aperture by applying laser radiation thereto. A filter is connectable in fluid communication between an interior and exterior of the chamber for permitting fluid to flow therethrough in a direction from the interior to the exterior of the chamber, and for substantially preventing contaminants from flowing therethrough in a direction from the exterior to the interior of the chamber.