Abstract:
A the discharge electrode made of at least two parts. One part is the mast, which is made from substantially non-electrically conductive material, such as a CPVC pipe. The second part is a spike-carrying elongated member, such as a wire, made of substantially electrically conductive material, with sharpened spikes extending from the wire. The spike-carrying elongated member is attached to the mast, such as by winding around the mast in a helical pattern, and connected to an electrical device. The spikes extend away from the mast.
Abstract:
Particulate pollutants such as carbonaceous particles are removed from an engine exhaust stream by passing the exhaust stream through an exhaust gas reactor, the exhaust stream first traversing a charging zone wherein the particles are charged via a corona discharge, and thereafter traversing a downstream collection zone wherein the charged particles are collected and eliminated by a collector/reactor having an oppositely charged reactive collecting surface.
Abstract:
A synchronized supercharge electrostatic field UV germicidal air filtration device is a high efficiency absolute air cleaner. It incorporates a dual function ionization system, electrostatic field filtration system UV light germicidal function within one system. This invention allows the physical size of air cleaning device to be substantially reduced while the absolute filtration efficiency is highly improved. This device provides a filtered and sterilized air output quality down to submicron size with quantifiable results; while it can be physically fit into an office partition wall. Secondly, both high voltage power supporting ionization and high voltage power supporting the electrostatic energy field are provided by one high voltage transforming circuit making it the most cost effective air filtration system.
Abstract:
An air purifier includes a main frame, a discharging device, a dust collection device and a voltage generator. The discharging device has a discharging portion and is installed in the main frame. The dust collection device has a dust collection portion and is installed in one side of the discharging device. The air purifier can produce ozone, negative ions and static electricity by moving the discharging portion and the dust collection portion and receiving suitable voltage. The voltage generator, the discharging portion, and the dust collection portion accomplish conduction. Production of ozone, negative ions and static electricity occurs according to separation between the discharging portion and dust collection portion, as well as the particular environment of operation, thereby improving air quality.
Abstract:
An electric precipitator prevents dielectric breakdown by ensuring the dielectric distance among a plurality of electrodes. The electric precipitator includes a charging section for charging dust particles in air, and a collecting section for collecting the dust particles charged by the charging section. The collecting section includes a high voltage electrode having a conductive layer coated with a dielectric layer, and a low voltage electrode having at least one protrusion that maintains a gap between the high voltage electrode and the low voltage electrode. The conductive layer includes at least one cutting part formed in an area corresponding to the protrusion.
Abstract:
An electrostatic precipitator unit used for the removal of coolant liquid and particles generated by a machine tool includes an electrostatic precipitator cell. The electrostatic precipitator cell includes power and collector ground fins and an ionizer grid positioned below the fins. The lower edges of the power fins are spaced above the collector ground fins to prevent contact of the liquid on the ground fins with the power fins. An electrical contact assembly for supplying electrical current to the ionizer grid and power fins is electrically isolated from all ground contacts by dielectric standoffs which define an insulating air gap. The likelihood of liquid tracking to ground is therefore eliminated.
Abstract:
A method and apparatus are provided for reducing significantly or to zero the waste effluent from a system including a boiler and a wet electrostatic precipitator, the waste effluent comprising blow down water discharged by the boiler during a blow down operation and bleed water discharged by the wet electrostatic precipitator. The method comprises collecting the blow down water, providing the collected blow down water to the wet electrostatic precipitator as a makeup water supplement, evaporating a portion the bleed water and leaving residual bleed water, providing the evaporated bleed water to the wet electrostatic precipitator as a further makeup water supplement, and using the residual bleed water to quench ash produced by combustion of solid fuel by the boiler. The apparatus includes an evaporator that provides direct contact between hot boiler flue gas and the bleed water such that a portion of the flue gas is quenched before being provided to the wet electrostatic precipitator.
Abstract:
The invention is a method and system for the generation of high voltage, pulsed, periodic corona discharges capable of being used in the presence of conductive liquid droplets. The method and system can be used, for example, in different devices for cleaning of gaseous or liquid media using pulsed corona discharge. Specially designed electrodes and an inductor increase the efficiency of the system, permit the plasma chemical oxidation of detrimental impurities, and increase the range of stable discharge operations in the presence of droplets of water or other conductive liquids in the discharge chamber.
Abstract:
A dust collector includes a charging part (12) for charging dust with electricity and a dust collecting part (30). Each of a dust collecting electrode (40) and a high-voltage electrode (50) that constitute the dust collecting part (30) includes: a base (41, 51) with a rectangular grid structure having a large number of vent holes (46, 56) formed therein; and projections (42, 52) extending into the vent holes (56, 46) of the opposed electrode (50, 40). The dust collector collects dust by generating an electric field between the dust collecting electrode (40) and the high-voltage electrode (50).
Abstract:
A dust collector includes a charging part (12) for charging dust with electricity and a dust collecting part (30). Each of a dust collecting electrode (40) and a high-voltage electrode (50) that constitute the dust collecting part (30) includes: a base (41, 51) with a rectangular grid structure having a large number of vent holes (46, 56) formed therein; and projections (42, 52) extending into the vent holes (56, 46) of the opposed electrode (50, 40). The dust collector collects dust by generating an electric field between the dust collecting electrode (40) and the high-voltage electrode (50).