Abstract:
A liquid crystal display device includes first and second substrates facing and spaced apart from each other, a gate line and a data line on an inner surface of the first substrate, a thin film transistor connected to the gate line and the data line, a passivation layer on the thin film transistor, a pixel electrode on the passivation layer, an organic insulating film on the pixel electrode corresponding to the data line, a reflective electrode on the organic insulating film and connected to the pixel electrode, a black matrix on an inner surface of the second substrate corresponding to the thin film transistor, a common electrode over the black matrix, and a liquid crystal layer between the reflective electrode and the common electrode.
Abstract:
A dual panel-type active matrix organic electroluminescent device includes a gate line disposed along a first direction on a first substrate, a data line disposed along a second direction on the first substrate, a power line disposed along the second direction on the first substrate and spaced apart from the data line to define a pixel region with the gate and data lines, the power line and the gate line both formed of a same material during a same process, a switching thin film transistor disposed on the first substrate near a crossing of the gate and data lines, a driving thin film transistor disposed on the first substrate near a crossing of the gate and power lines, a connecting pattern within the pixel region on the first substrate formed of an insulating material, and a connecting electrode disposed within the pixel region on the first substrate to cover the connecting pattern and electrically interconnecting the driving thin film transistor to an organic electroluminescent diode.
Abstract:
A method for forming an alignment layer of a liquid crystal display device includes providing a substrate having a plurality of unit panels formed thereon, loading the substrate onto a stage, selectively dropping an alignment material onto unit panel areas by using an alignment material dropping unit having a plurality of heads, each of the plurality of heads having a plurality of holes, and removing the alignment material remaining on a surface of the holes using an alignment material removal unit connected to the alignment material dropping unit.
Abstract:
A backlight unit includes a light guide plate, at least two lamps arranged along a side of the light guide plate for irradiating light onto the light guide plate, and a plurality of lamp housings having different shapes for enclosing each of the lamps.
Abstract:
A method and system are used for manufacturing a liquid crystal display device such that a dispensing amount of liquid crystal is measured. The method includes steps of filling liquid crystal into a case portion of a liquid crystal dispenser, assembling the liquid crystal dispenser to set the case portion into the liquid crystal dispenser, setting the liquid crystal dispenser in a testing apparatus, testing dispensing characteristics of the liquid crystal dispenser, mounting the liquid crystal dispenser on a liquid crystal dispensing unit of a production line after the testing the dispensing characteristics, dispensing the liquid crystal from the liquid crystal dispenser onto a first substrate of the liquid crystal display device disposed beneath the mounted liquid crystal dispenser, and assembling the first substrate with a second substrate to form a liquid crystal display device. By testing dispensing characteristics of the liquid crystal dispenser, it can be determined whether the liquid crystal dispenser is assembled correctly.
Abstract:
A backlight unit for a liquid crystal display device includes a plurality of lamps alternately arranged on at least two regions of a light emission surface, wherein each lamp has a length substantially shorter than that of the light emission surface, first, second, and third supports spaced apart from one another, wherein each support has a matching shape for mounting the lamps, a bottom support supporting the first, second, and third supports, and first, second, and third common electrodes respectively attached on the first, second, and third supports.
Abstract:
An organic electroluminescent device includes first and second substrates spaced apart from and facing each other, an organic electroluminescent diode on an inner surface of the second substrate, a gate line formed on an inner surface of the first substrate in a first direction, a data line formed in a second direction crossing the first direction, a power supply line spaced apart from the data line and formed in the second direction, the power supply line made of the same material as the gate line, the power supply line having a power supply link line near a crossing portion of the gate line and the power supply line, a switching thin film transistor at a crossing portion of the gate and data lines, the switching thin film transistor including a first semiconductor layer made of amorphous silicon, a driving thin film transistor at a crossing portion of the switching thin film transistor and the power supply line, the driving thin film transistor including a second semiconductor layer made of amorphous silicon, a connecting electrode connected to the driving thin film transistor and made of the same material as the data line, and an electrical connecting pattern corresponding to the connecting electrode and for electrically connecting the connecting electrode to the organic electroluminescent diode, wherein the switching thin film transistor and the driving thin film transistor further include first and second gate insulating layers, respectively, the first gate insulating layer having the same shape as the first semiconductor layer, the second gate insulating layer having the same shape as the second semiconductor layer.
Abstract:
A substrate transfer system is used in fabricating a liquid crystal display (LCD) device. The system includes a cassette having a bar code, a cassette stoker to store the cassette; an auto guided vehicle that is able to transfer the cassette; a moving path unit to determine a moving path of the auto guided vehicle, a plurality of process stages at which processes are conducted on a substrate during fabrication of the LCD device, and a host to control the cassette stoker, the auto guided vehicle and the process stages. At least one of the auto guided vehicle and the cassette stoker having a bar code reader.
Abstract:
A method for forming a pattern includes filling a resist in a groove of a clichnull corresponding to the position of the pattern to be formed, transferring the resist which is filled in the groove onto a printing roll by rotating the printing roll in a direction parallel to the longest portion lengthwise direction of a pattern formed in clichnull, and applying the resist on an etching object layer by rotating the printing roll along the etching object layer on a substrate.
Abstract:
A method of fabricating a liquid crystal display device includes providing a first substrate, forming an alignment layer on the first substrate using an ink jet method to form a plurality of holes that expose portions of the first substrate, and forming a spacer within each of the plurality of holes using the ink jet method.