Abstract:
Systems, devices and methods are provided to improve performance of integrated circuits by providing a low-k insulator. One aspect is an integrated circuit insulator structure that includes a vapor-deposited dielectric material. The dielectric material has a predetermined microstructure formed using a glancing angle deposition (GLAD) process. The microstructure includes columnar structures that provide a porous dielectric material. One aspect is a method of forming a low-k insulator structure. In one embodiment, a predetermined vapor flux incidence angle null is set with respect to a normal vector for a substrate surface so as to promote a dielectric microstructure with individual columnar structures. Vapor deposition and substrate motion are coordinated so as to form columnar structures in a predetermined shape. Other aspects are provided herein.
Abstract:
A method of forming a high dielectric film using atomic layer deposition (ALD), and a method of manufacturing a capacitor having the high dielectric film, include supplying a precursor containing a metal element to a semiconductor substrate and purging a reactor; supplying an oxidizer and purging the reactor; and supplying a reaction source containing nitrogen and purging the reactor.
Abstract:
Oxidation methods and resulting structures including providing an oxide layer on a substrate and then re-oxidizing the oxide layer by vertical ion bombardment of the oxide layer in an atmosphere containing at least one oxidant. The oxide layer may be provided over diffusion regions, such as source and drain regions, in a substrate. The oxide layer may overlie the substrate and is proximate a gate structure on the substrate. The at least one oxidant may be oxygen, water, ozone, or hydrogen peroxide, or a mixture thereof. These oxidation methods provide a low-temperature oxidation process, less oxidation of the sidewalls of conductive layers in the gate structure, and less current leakage to the substrate from the gate structure.
Abstract:
A nitride semiconductor device comprising a substrate (101) having trenches (102b) each formed of a cavity and peaks (102a) formed from a group III nitride on the surface thereof; a nitride semiconductor layer (106) formed on the substrate (101); and a nitride semiconductor multilayered structure that is formed on the nitride semiconductor layer (106) and has an active layer, wherein the lattice constant of the substrate (101) is different from that of the group III nitride substance (102a), the substrate (101) has a mask (104a) formed from a dielectric (104), the mask (104a) is formed only on the side surfaces of the peaks (102a), the upper surfaces of the peaks (102a) are exposed and the substrate (101) is exposed in the trenches (102b), a height L1 of the mask (104a) is not less than 50 nm and not more than 5000 nm, a width L2 of the trench (102b) is not less than 5000 nm and not more than 50000 nm, and an aspect ratio L1/L2 of the trenches (102b) is not less than 0.001 and not more than 1.0. This structure enhances the reliability of the nitride semiconductor devices.
Abstract:
The present invention relates to a process for grafting and growing a conductive organic film on(to) an electrically conductive or semiconductive surface in which the grafting and growing of the film are performed simultaneously by electro-reduction of a diazonium salt that is a precursor of the said film on(to) the said surface cathodically polarized at a potential greater than or equal, in absolute value, to the electro-reduction potential of the diazonium salt relative to a reference electrode. The invention finds an application especially in the protection of surfaces, the manufacture of localized conductive coatings, of chemical sensors in the fields of chemistry and molecular biology, the manufacture of biomedical equipment, etc.
Abstract:
This invention relates to a chemical vapor deposition process for forming Zr or Hf oxynitride films suitable for use in electronic applications such as gate dielectrics. The process comprises: a. delivering a Zr or Hf containing precursor in gaseous form to a chemical vapor deposition chamber; and, b. simultaneously delivering an oxygen source and a nitrogen source to the chamber separately, such that mixing of these sources with the precursor does not take place prior to delivery to the chamber; and, c. contacting the resultant reaction mixture with a substrate in said chamber, said substrate heated to an elevated temperature to effect deposition of the Zr or Hf oxynitride film, respectively. A silicon containing precursor may be added simultaneously to the chamber for forming Zr or Hf silicon oxynitride films.
Abstract:
An opaque, low resistivity silicon carbide and a method of making the opaque, low resistivity silicon carbide. The opaque, low resistivity silicon carbide is doped with a sufficient amount of nitrogen to provide the desired properties of the silicon carbide. The opaque, low resistivity silicon carbide is a free-standing bulk material that may be machined to form furniture used for holding semi-conductor wafers during processing of the wafers. The opaque, low resistivity silicon carbide is opaque at wavelengths of light where semi-conductor wafers are processed. Such opaqueness provides for improved semi-conductor wafer manufacturing. Edge rings fashioned from the opaque, low resistivity silicon carbide can be employed in RTP chambers.
Abstract:
Part of a first oxide film formed by thermal oxidation is removed by etching. A second oxide film is formed in the part of substrate from which the first oxide film has been removed using heated nitric acid. The two oxide films are nitrided by a nitrogen plasma having a low energy so as to be first and second gate insulating films, i.e., oxynitride films, respectively.
Abstract:
A method of forming silicon nitride nanodots that comprises the steps of forming silicon nanodots and then nitriding the silicon nanodots by exposing them to a nitrogen containing gas. Silicon nanodots were formed by low pressure chemical vapor deposition. Nitriding of the silicon nanodots was performed by exposing them to nitrogen radicals formed in a microwave radical generator, using N2 as the source gas.
Abstract:
A method of filling a plurality of trenches etched in a substrate. In one embodiment the method includes depositing a layer of spin-on glass material over the substrate and into the plurality of trenches; exposing the layer of spin-on glass material to a solvent; curing the layer of spin-on glass material; and depositing a layer of silica glass over the cured spin-on glass layer using a chemical vapor deposition technique.