Abstract:
A method of forming a gate in a FinFET device includes forming a fin on an insulating layer, forming source/drain regions and forming a gate oxide on the fin. The method also includes depositing a gate material over the insulating layer and the fin, depositing a barrier layer over the gate material and depositing a bottom anti-reflective coating (BARC) layer over the barrier layer. The method further includes forming a gate mask over the BARC layer, etching the BARC layer, where the etching terminates on the barrier layer, and etching the gate material to form the gate.
Abstract:
A punch-through diode transient suppression device has a base region of varying doping concentration to improve leakage and clamping characteristics. The punch-through diode includes a first region comprising an n+ region, a second region comprising a p− region abutting the first region, a third region comprising a p+ region abutting the second region, and a fourth region comprising an n+ region abutting the third region. The peak dopant concentration of the n+ layers should be about 1.5E18 cm−3, the peak dopant concentration of the p+ layer should be between about 1 to about 5 times the peak concentration of the n+ layer, and the dopant concentration of the p− layer should be between about 0.5E14 cm−3 and about 1.OE17 cm−3. The junction depth of the fourth (n+) region should be greater than about 0.3 &mgr;m. The thickness of the third (p+) region should be between about 0.3 &mgr;m and about 2.0 &mgr;m, and the thickness of the second (p−) region should be between about 0.5 &mgr;m and about 5.0 &mgr;m.
Abstract:
A semiconductor-on-insulator (SOI) device. The SOI device includes a substrate having a buried oxide layer disposed thereon and an active layer disposed on the buried oxide layer. The active layer has an active region defined by isolation regions, the active region having a source and a drain with a body disposed therebetween. The source and the drain have a selectively grown silicon-germanium region disposed under an upper layer of selectively grown silicon. The silicon-geranium regions form heterojunction portions respectively along the source/body junction and the drain/body junction.
Abstract:
A semiconductor device is formed by providing a semiconductor substrate comprising a strained lattice semiconductor layer at an upper surface thereof and having a pre-selected amount of lattice therein, forming a thin buffer/interfacial layer of a low-k dielectric material on the upper surface of the semiconductor substrate, and forming a layer of a high-k dielectric material on the thin buffer/interfacial layer of a low-k dielectric material. Embodiments include forming the thin buffer/interfacial layer and high-k layer at a minimum temperature sufficient to effect formation of the respective dielectric layer without incurring, or at least minimizing, strain relaxation of the strained lattice semiconductor layer.
Abstract:
A semiconductor-on-insulator (SOI) device. The SOi device includes a substrate, an insulator layer disposed on the substrate and an active region disposed on the insulator layer. The active region includes a source, a drain, and a body disposed therebetween. The source and body form an abrupt or hyperabrupt source/body junction. A gate is disposed on the body to operatively form a transistor. An implanted region forms an interface between the body and the drain, the implanted region formed by tilted atom implantation in a direction towards the active region and under the gate from an angle tilted towards the drain with respect to vertical, the implanted region resulting in the formation of a graded drain/body junction. Also disclosed is a method of fabricating the SOI device.
Abstract:
A device and method for making a semiconductor-on-insulator (SOI) structure having a leaky, thermally conductive material (LTCIM) layer disposed between a semiconductor substrate and a semiconductor layer.
Abstract:
Multiple dopant implantations are performed on a FinFET device to thereby distribute the dopant in a substantially uniform manner along a vertical depth of the FinFET in the source/drain junction. Each of the multiple implantations may be performed at different tilt angles.
Abstract:
A method for forming a group of structures in a semiconductor device includes forming a conductive layer on a substrate, where the conductive layer includes a conductive material, and forming an oxide layer over the conductive layer. The method further includes etching at least one opening in the oxide layer, filling the at least one opening with the conductive material, etching the conductive material to form spacers along sidewalls of the at least one opening, and removing the oxide layer and a portion of the conductive layer to form the group of structures.
Abstract:
A method of forming a specialized channel region removes a sacrificial gate material and provides a semiconductor implant though the recess associated with the remove sacrificial gate material. The process can be utilized to form a silicon germanium layer in the channel region having a sharp profile in the vertical direction. Further, the silicon germanium layer can be ultra-thin. The silicon germanium channel region has increased charge mobility with respect to conventional channel regions.
Abstract:
MOSFETs are fabricated with accurately defined, high and uniformly concentrated source/drain regions and extensions employing plural, sequential pre-amorphizing, implanting and laser thermal annealing steps with intervening spacer removal. Embodiments include forming sidewall spacers on a gate electrode, sequentially pre-amorphizing, ion implanting and laser thermal annealing to form deep source/drain regions, removing the sidewall spacers, and then sequentially pre-amorphizing, ion implanting and laser thermal annealing to form shallow source/drain extensions.