Abstract:
This disclosure relates to techniques for supporting asymmetric uplink and downlink bandwidth allocations for a wireless device, and for dynamically modifying the bandwidth allocations for a wireless device, in a wireless communication system. A cellular communication link may be established between a base station and a wireless device. The base station may determine an uplink bandwidth allocation and a downlink bandwidth allocation for the wireless device. The uplink bandwidth allocation and the downlink bandwidth allocation may be selected based on different criteria and may include different amounts of bandwidth. Indications of the uplink bandwidth allocation and the downlink bandwidth allocation may be provided to the wireless device. The base station and wireless device may communicate according to the uplink bandwidth allocation and the downlink bandwidth allocation.
Abstract:
A downlink control information (DCI), such as a blanking DCI (bDCI) message may be transmitted by a base station (e.g., eNB) and received by a mobile device (e.g., UE). The bDCI may indicate that the eNB will not transmit a subsequent DCI to the UE for a duration of time. The UE may be in continuous reception mode or connected discontinuous reception (C-DRX) mode. The UE may therefore determine to enter a sleep state or take other action. The bDCI may specify an explicit blanking duration, or an index indicating a blanking duration from a lookup table, and/or the blanking duration (and/or a blanking duration offset value) may be determined in advance, e.g., semi-statically. When the UE is in C-DRX mode, the UE may be configured such that either the sleep/wake period of the C-DRX mode or the blanking period of the bDCI may take precedence over the other.
Abstract:
Embodiments are presented herein of apparatuses, systems, and methods for utilizing a flexible slot indicator in wireless communication. A base station (BS) may establish communication with a first user equipment device (UE). The BS may determine a transmission direction for each of a plurality of symbols included in one or more slots. The BS may transmit a slot format indicator (SFI) to the UE. The SFI may indicate the transmission direction for each of the plurality of symbols included in one or more slots. The BS and the UE may perform communication during the one or more slots according to the determined transmission direction.
Abstract:
A wireless communication device (UE) may receive control indicator information (CII) indicating whether one or more candidate physical control channels (PCCs) are available to the UE for decoding. The UE may perform respective blind decoding if the CII indicates that the one or more candidate PCCs are available, to decode a respective PCC intended for the UE. The UE may receive the CII in the same slot in which PCCs are transmitted, or it may receive the CII in another slot, which may be a narrowband slot. The UE may receive the PCCs in the same slot in which corresponding physical data channels (PDCs) are transmitted, or it may receive the PCCs in another slot, e.g. a slot immediately preceding the slot in which the corresponding PDCs are transmitted. By eliminating unnecessary blind decoding and receiving the CII over narrowband, power consumption of the UE may be greatly reduced.
Abstract:
Techniques are disclosed relating to concurrent wireless connectivity. In some embodiments, a base station apparatus includes one or more processing elements and one or more memories having program instructions stored thereon that are executable by the one or more processing elements to perform the following operations. In some embodiments, the operations include communicating with a mobile device as a master base station during a time interval in which the mobile device is also assigned radio resources by a first secondary base station. In some embodiments, the operations include requesting that a second secondary base station allocate radio resources for the mobile device during the time interval, without releasing the first secondary base station, such that radio resources of both the first and second secondary base stations are allocated to the mobile device during the time interval.
Abstract:
Apparatus and methods for time division multiplexing of radio frequency channels in unlicensed radio frequency bands by a wireless device in communication with a cellular wireless network are disclosed. The wireless device obtains, from an eNodeB, a configuration for carrier aggregation using a primary component carrier (PCC) in a licensed radio frequency band and at least one secondary component carrier (SCC) in an unlicensed radio frequency band. The configuration information specifies an “on” time period and an “off” time period for a repetitive time division cycle to use the at least one SCC in the unlicensed radio frequency band. During an “on” time period, the wireless device can transmit or receive using the PCC and the at least one SCC, as scheduled by the eNodeB. During an “off” time period, the wireless device can transmit or receive using the PCC and not using the at least one SCC.
Abstract:
Carrier aggregation using unlicensed frequency bands. A primary carrier for communication between a base station (BS) and a wireless user equipment (UE) device may be configured according to a first wireless communication technology. The primary carrier may be on a licensed frequency band. A secondary carrier for communication between the BS and the UE may also be configured according to a first wireless communication technology. The secondary carrier may be on an unlicensed frequency band. Channel conditions for each of multiple possible channels of the unlicensed frequency band may be assessed according to a second wireless communication technology as part of configuring the secondary carrier.
Abstract:
This disclosure relates to Wi-Fi signaling in conjunction with cellular communication in unlicensed frequency bands for efficient co-existence. According to one embodiment, a cell may be established between a cellular base station and a wireless user equipment device on a frequency channel in an unlicensed frequency band. A cellular communication may be scheduled between the base station and the user equipment device. A Wi-Fi signal may be transmitted on the frequency channel in conjunction with the scheduled cellular communication. The Wi-Fi signal may indicate a length of the scheduled cellular communication using Wi-Fi signaling. The scheduled cellular communication may be performed via the cell.
Abstract:
This disclosure relates to aggregation of radio resources provided according to multiple radio interfaces. According to some embodiments, a base station may establish a radio bearer with a wireless user equipment (UE) device. The radio bearer may initially utilize a first radio interface between the base station and the UE. The base station may receive an indication to aggregate radio resources of an access point that utilizes a second radio interface for the UE. Based on the indication to aggregate radio resources for the UE, the base station may redirect at least a portion of data of the radio bearer by way of the access point to be exchanged with the UE using the second radio interface.
Abstract:
Techniques are disclosed relating to informing a network that a UE desires packet-switched voice communication. In one embodiment, a method includes receiving first information from a UE device requesting voice communication over a packet-switched network. In this embodiment, the method further includes transmitting, in response to the first information, second information to a base station serving the UE device, wherein the second information indicates that the UE device is requesting voice communication over the packet-switched network. In this embodiment, the transmitting is performed prior to establishment of a dedicated bearer by the base station for the UE device. In this embodiment, the second information operates to configure communications between the base station and the UE device to provide a particular quality of service for the packet-switched voice communication using the dedicated bearer.