Abstract:
A flat display device including an active area for displaying an image and a non-active area for lines in which drive circuits apply data signals to the image display area from signal lines the device including a first signal layer of first signal lines in the non-active area, a second signal layer of second signal lines in the non-active area, and a first insulating layer between the first and second layers.
Abstract:
A liquid crystal dispensing apparatus dispenses liquid crystal onto a substrate. The liquid crystal dispensing apparatus includes a frame, a table, at least one liquid crystal discharge device, and a liquid crystal amount inspecting portion. The table is installed on the frame to have the substrate to be mounted thereon. The liquid crystal discharge device adjustably discharges an amount of liquid crystal, and the liquid crystal amount inspecting portion inspects a liquid crystal dispensing amount by comparing an actual amount of liquid crystal discharged from the liquid crystal discharge device with a preset liquid crystal amount. The liquid crystal discharge device includes a piston to perform ascending motions to draw in the liquid crystal and descending motions to discharge the liquid crystal with an angle of at least a portion of the liquid crystal discharge device determining a magnitude of the ascending/descending motion to control an amount of liquid crystal discharged.
Abstract:
An organic electroluminescent display device includes first and second substrates facing and spaced apart from each other, the first and second substrates having a plurality of pixel regions and a peripheral region surrounding the plurality of pixel regions, a first pad disposed at the peripheral region on an inner surface of the first substrate, a driving thin film transistor disposed at each of the plurality of pixel regions on the inner surface of the first substrate, the driving thin film transistor including an active layer, a gate electrode, and source and drain electrodes, a first connection electrode structure connected to the drain electrode, a second connection electrode structure connected to the first pad, the second connection electrode structure being the same as the first connection electrode structure, a first electrode on an entire inner surface of the second substrate, the first electrode being connected to the second connection electrode structure, an organic emission layer on the first electrode, a second electrode on the organic emission layer at each of the plurality of pixel regions, the second electrode being connected to the first connection electrode structure, and a sealant attaching the first and second substrates together.
Abstract:
A method of fabricating a transflective liquid crystal display device includes providing first and second substrates that include a plurality of unit pixels divided into a transmission part and a reflection part, forming a first color filter unit by applying a first color pigment in the transmission part of the first substrate, forming a second color filter unit by applying a transparent material and a second color pigment in the reflection part of the first substrate, and attaching the first substrate and a second substrate together.
Abstract:
A liquid crystal display device includes an upper substrate, a lower substrate, a liquid crystal layer between the upper and lower substrates, a transparent electrode consisting of at least two layers of transparent material provided on at least one of the upper and lower substrates and a spacer material jetted onto the transparent electrode by an ink-jet system, wherein the spacer material has a hydrostatic property different from one of the at least two layers of the transparent electrode.
Abstract:
An organic electroluminescent display (ELD) device includes a first substrate, a second substrate spaced apart and facing the first substrate, a plurality of switching thin film transistors and a plurality of driving thin film transistors interconnected on the first substrate, each of the switching thin film transistor and the driving thin film transistor having an active layer, a gate electrode, a source electrode, and a drain electrode, the drain electrode of the driving thin film transistor being extended to the pixel region to have an extended portion, a contact electrode contacting the extended portion of the drain electrode of the driving thin film transistor, a first electrode formed on the second substrate, an organic light-emitting layer on the first electrode, and a second electrode on the organic light-emitting layer.
Abstract:
An organic electroluminescent display device includes a first substrate, a second substrate spaced apart and facing the first substrate, a switching thin film transistor disposed on an inner surface of the first substrate, a driving thin film transistor electrically connected to the switching thin film transistor, a connecting electrode electrically connected to the driving thin film transistor, a first electrode disposed on an inner surface of the second substrate, a partition wall disposed on the first electrode and having a transmissive hole corresponding to a pixel region between the first and second substrates, an organic layer disposed within the transmissive hole on the first electrode, and a second electrode disposed on the organic layer, wherein the second electrode is electrically connected to the driving thin film transistor through the connecting electrode.
Abstract:
An organic electroluminescent display device includes a first substrate, a second substrate spaced apart from and facing the first substrate to form a space therebetween, an array element on an inner surface of the first substrate, an organic electroluminescent diode on an inner surface of the second substrate, a seal pattern along a peripheral portion between the first and second substrates, and a connection pattern electrically interconnecting the array element and the organic electroluminescent diode, wherein a pressure within the space between the first and second substrates is lower than an ambient atmospheric pressure.
Abstract:
An array substrate for a liquid crystal display device includes a substrate, a gate line and a data line on the substrate, the gate line and the data line crossing each other to define a pixel area, a thin film transistor electrically connected to the gate and data line and includes a gate electrode, an active layer, a source electrode, and a drain electrode, a passivation layer covering the gate line, the data line, and the thin film transistor, and having a contact hole situated on the active layer to expose portions of the drain electrode and the active layer, and a pixel electrode on the passivation layer and connected to the drain electrode through the contact hole.
Abstract:
An organic electroluminescent device includes first and second substrates attached by a seal pattern; array elements including a plurality of switching devices on the first substrate; a color changing medium on a rear surface of the second substrate, wherein the color changing medium has a black matrix that defines sub-pixel regions and has red, green and blue color changing layers respectively corresponding to the sub-pixel regions, a planarizing layer on the color changing medium,; a first electrode on a rear surface of the planarizing layer; an organic electroluminescent layer on a rear surface of the first electrode; second electrodes on a rear surface of the organic electroluminescent layer that correspond to respective sub-pixel regions, and a plurality of electrical connectors between the first and second substrates, wherein electrical connectors connect an array elements on the first substrate to second electrodes on the second substrate, respectively.