Abstract:
A method for securing a metallic substrate (24) to a metallic housing (26). The method may include: firing a first solderable coating (64) to an edge (60) of the metallic substrate (24); firing a second solderable coating (64) to a groove (62) of the metallic housing (26); joining the edge (60) of the metallic substrate (24) to the groove (62) of the metallic housing (26) to form a joint (66) at the first solderable coating and the second solderable coating; applying a solder (68) to the joint (66); and solder bonding the metallic substrate (24) to the metallic housing (26) to provide a hermetic seal at the joint (66). There is also an electronic control module that incorporates the method.
Abstract:
In a data packet router, a router fabric card for routing data packets is provided. The router fabric card comprises a plurality of ingress/egress ports, the ports connected through a switching facility for switching connection states of the port paths between individual ingress paths and individual egress paths on the fabric card, and a scheduling component for scheduling communication between ports on the fabric card. Data coming into ingress on the card is organized into individual data-packet trains, each individual train comprising data packets and inserted data denoting a starting point and an ending point of a train. The switching facility recognizes the start data and the end data of a train and switches port paths to a next-assigned connection state accordingly.
Abstract:
Certain complexes containing ligands having a phosphino group, amino group or an imino group, and a second functional group such as amide, ester or ketone, when complexed to transition metals, catalyze the (co)polymerization of olefinic compounds such as ethylene, &agr;-olefins and/or acrylates. A newly recognized class of ligands for making copolymer containing polar monomers using late transition metal complexes is described.
Abstract:
Disclosed are dentifrice compositions comprising in a single phase: (a) from about 0.1% to about 30% of one or more linear polyphosphates having an average chain length of about 4 or more; (b) an ionic active ingredient selected from the group consisting of a fluoride ion source, a stannous ion source, a zinc ion source, a copper ion source and mixtures thereof, wherein the ionic active ingredient is present as a solid dispersion in the composition and delivers and effective amount of ionic active when solubilized; (c) a binder system comprised of (i) from about 0.05% to about 3% of a thickening agent selected from the group consisting of polysaccharides, carbomers, poloxamers, modified celluloses, and mixtures thereof; and (ii) from about 0.1% to about 70% of at least one humectant; wherein the dentifrice composition has a total water content of less than about 10%. Further disclosed are methods for stabilizing dentifrice compositions by providing such a binder system.
Abstract:
Olefins, such as ethylene, are polymerized using as a polymerization catalyst a complex of a selected transition metal with an anionic ligand that has at least three atoms that may coordinate to the transition metal. Also disclosed are the above selected transition metal complexes, and intermediates thereto.
Abstract:
In the present invention, the methods and apparatus for making efficient laser beam coupling are disclosed. In particular, new structures for shaping and rearranging laser beams from diode laser array are disclosed. Along with the use of unique methods for coupling pumping laser beam into optical fiber or other media, high efficiency can be achieved. These aspects of the present invention will facilitate the realization of high-efficiency and high-power fiber lasers, fiber amplifiers, or other solid state lasers. The beam shaping structures can significantly improve the quality of the beams from diode laser array, and is easy to realize and less demanding in system alignment. Thus, a diode-pumped solid state laser of this invention may comprise a laser medium, a focusing means, a beam source comprising at least one laser diode array, a beam offsetting means, an image optics and a beam redirection means.
Abstract:
In the present invention, the methods and apparatus for making efficient laser beam coupling are disclosed. In particular, new structures for shaping and rearranging laser beams from diode laser array are disclosed. Along with the use of unique methods for coupling pumping laser beam into optical fiber or other media, high efficiency can be achieved. These aspects of the present invention will facilitate the realization of high-efficiency and high-power fiber lasers or other solid state lasers. The beam shaping structures can significantly improve the quality of the beams from diode laser array, and is easy to realize and less demanding in system alignment. Thus, a diode-pumped solid state laser of this invention may comprise a laser medium, a focusing means, a beam source comprising at least one laser diode array, a beam offsetting means, an image optics and a beam redirection means.
Abstract:
Improved photovoltaic cells utilizing for a semiconductor layer, titanium dioxide powders, consisting of porous particles, ranging in size from 0.1 to 10 microns (10.sup.-6 meters), and possess relatively high bulk density combined with high surface area.
Abstract:
New x-ray photoconductive compositions are disclosed which are certain composites containing (1) inorganic clusters of VB-VIB semiconductors, VB-VIIB semiconductors, IIB-VIB semiconductos, IIB-VB semiconductors, IIIB-VB semiconductors, IIIB-VIB semiconductors, IB-VIB semiconductors and/or IVB-VIIB semiconductors and (2) polymers which are essentially non-carrier-transporting in the absence of x-rays. Also disclosed is an x-ray radiograpy apparatus which employs an image receptor which is a composite of certain inorganic clusters and polymers. A method is disclosed for enhancing the x-ray absorbing efficiency of a polymer which is essentially non-carrier transporting in the absence of x-rays and the x-ray photoconductivity of said polymer by doping the polymer with an effective amount of clusters having a size within the range of from about 0.001 .mu.m to 10 .mu.m.
Abstract:
This invention relates to a composition, comprising a carbon nanostructure having a palladium crystallite encapsulated therein; and more particularly, to worm-like carbon nanostructures attached to a carbon cluster, the worm-like nanostructures being comprised of a plurality of connecting sections of carbon tubes terminating in an end portion which encapsulates a palladium crystallite within its internal cavity.