Abstract:
A system for tracking at least one plant includes an electronic tag including an interrogation interface and memory circuitry and a package for the electronic tag, the package being configured for physical association with at least one corresponding plant. The package may be configured for self-contained physical association with the at least one plant. The electronic tag may be interrogated by multiple trading partners in a supply chain.
Abstract:
One or more plants may be associated with an electronic tag including a memory circuit and interrogation interface. The memory circuit in the electronic tag may include data corresponding to the one or more plants. According to an embodiment the data may include plant care information such as a record of treatments received by the one or more plants and/or plant care instructions. The data may be structured.
Abstract:
A system for tracking treatments for at least one plant includes an electronic tag associated with the at least one plant, an electronic tag interrogator configured to interrogate the electronic tag, and a treatment apparatus for applying treatments to the at least one plant.
Abstract:
A system is described generally for providing a structure or structures for altering water surface temperature. The system includes a holding vessel configured to hold water. The holding vessel has at least one wall coupled to a lowermost portion. The at least one wall extends above the water level and the lowermost portion is configured to be submerged. At least one conduit extends from the lower side of the holding vessel. The at least one conduit has a length extending to a depth at which a property of water at the depth is substantially different from that of the water at the surface. The at least one conduit or the holding vessel includes at least one aperture formed in at least one of the holding vessel or the at least one conduit and located at a distance below the mean surface water level and at least one one way valve is coupled to the at least one aperture and allowing flow of water in only one direction.
Abstract:
Embodiments disclosed herein relate to systems including a limbed vehicle having a plurality of controllably movable limbs (e.g., a limbed machine, limbed robot, etc.) and a plurality of spaced posts that the limbed vehicle may travel on using the limbs. As non-limiting examples, such disclosed embodiments of systems may be used to service an agriculture field, to enable travel over an environmentally-sensitive area or an area impassable by a conventional wheeled or tracked vehicle, and may be used in many other different applications. Embodiments disclosed herein also relate to methods of operating a limbed vehicle to travel on a plurality of spaced posts.
Abstract:
Systems and methods are described for implementing or deploying medical or veterinary utility modules (a) operable for mooring at least partly within a digestive tract, (b) small enough to pass through the tract per vias naturales and including a wireless-control component, (c) having one or more attachment protrusions positionable adjacent to a mucous membrane, (d) configured to facilitate redundant modes of attachment, (e) facilitating a “primary” material supply deployable within a stomach for an extended and/or controllable period, (f) moored by one or more adaptable extender modules supported by a subject's head or neck, and/or (g) configured to facilitate supporting at least a sensor within a subject's body lumen for up to a day or more.
Abstract:
Systems and methods are described for implementing or deploying medical or veterinary utility modules comprising a first module operable in a digestive or respiratory tract to engage a second module, optionally by a magnetic field. Alternatively or additionally, systems may be operable to remain in situ and also operable to permit a therapeutic material dispensation. In some contexts, for example, systems or methods may dispense a therapeutic material via a subject's throat or elsewhere in the digestive or respiratory tract.
Abstract:
Systems and methods are described for implementing or deploying medical or veterinary utility modules (a) operable for mooring at least partly within a digestive tract, (b) small enough to pass through the tract per vias naturales and including a wireless-control component, (c) having one or more attachment protrusions positionable adjacent to a mucous membrane, (d) configured to facilitate redundant modes of attachment, (e) facilitating a “primary” material supply deployable within a stomach for an extended and/or controllable period, (f) moored by one or more adaptable extender modules supported by a subject's head or neck, and/or (g) configured to facilitate supporting at least a sensor within a subject's body lumen for up to a day or more.
Abstract:
A method may include receiving epigenetic information associated with at least one individual. The epigenetic information may be utilized to calculate a risk. A least a portion of the risk may be transferred utilizing the epigenetic information.