Abstract:
The invention relates to a method of marking a substrate comprising treating the substrate with a boron compound and a charrable agent, and, irradiating the areas of the substrate to be marked such that those areas change colour. Marked substrates obtainable by this method are also provided.
Abstract:
A composition susceptible to changing color upon the application of energy, wherein the composition comprises a color former and a tinting colorant, wherein the tinting colorant has a complementary color to that of the composition comprising the color former without tinting colorant. Preferably, the composition 5 also comprises an energy absorbing additive. The invention also provides a method of improving contrast when a composition susceptible to changing color is imaged.
Abstract:
A method for marking an substrate, comprising coating the substrate with a white or colorless solution of a soluble alkali or alkaline earth metal salt of a weak acid and irradiating areas of the substrate to be marked such that those areas change color, wherein the substrate comprises a polysaccharide material.
Abstract:
A laser-markable composition comprises a pigment, a solvent and a conductive polymer that absorbs IR radiation. This can be used to mark a substrate, using a low-energy laser.
Abstract:
The present invention provides heat-sensitive coating compositions, which comprise a colour developer of formula (1) or mixtures thereof wherein R can be hydrogen, C1-20-alkyl, C3-8-cycloalkyl, C2-10-alkenyl, aryl or SO3H, and R2 and R3 can be the same or different and can be hydrogen, halogen, C1-20-alkyl, C3-8-cyclo-alkyl, C2-10-alkenyl, aryl, OR6, NR7R8, SR9, SO3H or COOR10 and R4 and R5 can be the same or different, and can be hydrogen, halogen, C1-20-alkyl, C3-8-cyclo-alkyl, C2-10-alkenyl, aryl, OR6, NR7R8 or SR9, R6, R7, R8, R9 and R10 can be the same or different and can be hydrogen, C1-30-alkyl, C3-8-cycloalkyl, C2-10-alkenyl or aryl, wherein C1-20-alkyl can be unsubstituted or substituted with one or more C3-8-cycloalkyl, C2-10-alkenyl, phenyl, halogen, OR11, NR12R13, SR14, SO3H or COOR15, and aryl can be unsubstituted or substituted with one or more halogen, C1-10-alkyl, halogenated C1-10-alkyl, C3-8-cycloalkyl C2-10-alkenyl, phenyl, OR11, NR12R13, SR14, SO3H or COOR15, wherein R11, R12, R13, R14 and R15 can be the same or different and can be hydrogen, C1-10-alkyl, C3-8-cycloalkyl or C2-10-alkenyl, a process for the preparation of these compositions, a process of coating substrates with these compositions, substrates coated with these compositions, a process for preparing marked substrates using these compositions, marked substrates obtainable by the latter process, and certain colour developers.
Abstract:
The present invention relates to a composition formed of a hot melt adhesive having a colour-forming compound admixed therein. The invention further relates to a substrate or multi-layer substrate construction having the composition applied thereon or therein, and methods of forming colour and/or an image on and/or within the substrate or multi-layer substrate construction using said composition.
Abstract:
The invention is directed towards a composition comprising: a near-infrared radiation absorbing compound; a colour-forming compound; and a heat transfer agent operable to facilitate heat transfer from the near-infrared radiation absorbing compound to the colour-forming compound; wherein the near-infrared radiation absorbing compound is present in an amount of 0.1-3.5 wt % of the total composition, and the heat transfer agent is present in an amount of 1-15 wt % of the total composition, and the heat transfer agent is present in the composition as solid particles. The invention further relates to substrates comprising the composition applied thereto, as well as methods of forming colour or an image on said substrates.
Abstract:
The present invention relates to a method of forming an image on a substrate comprising a transparent or translucent composition applied thereto, wherein the transparent or translucent composition comprises a protein in a non-denatured state, and the method comprises applying radiation to the transparent or translucent composition to denature the protein and thereby form an image on the substrate. The invention also relates to a method of preparing a substrate on which an image can be formed, and related substrates, compositions and uses thereof.
Abstract:
A method of imparting color to a plastic substrate comprising applying to the substrate, or incorporating within the substrate, a diacetylene compound of general formula (I) wherein n=1 to 20; R1=an optionally substituted C1-20 alkyl group which may contain heteroatoms; T=H, an optionally substituted C1-20 alkyl group which may contain heteroatoms or —(CH2)m—C(═O)-Q2R2; Q1=NH, CO, NHCONH, OCONH, COS, NHCSNH or NR3, wherein m, Q2 and R2 are independently selected from the same groups as n, Q1 and R1 respectively; R3 is an optionally substituted C1-20 alkyl group which may contain heteroatoms; and irradiating the substrate to impart color to the substrate is described.
Abstract:
The present invention provides heat-sensitive coating compositions, which comprise a color developer of formula (1) or mixtures thereof wherein R1 can be hydrogen, C1-20-alkyl, C3-8-cycloalkyl, C2-10-alkenyl, aryl or SO3H, and R2 and R3 can be the same or different and can be hydrogen, halogen, C1-20-alkyl, C3-8-cyclo-alkyl, C2-10-alkenyl, aryl, OR6, NR7R8, SR9, SO3H or COOR10 and R4 and R5 can be the same or different, and can be hydrogen, halogen, C1-20-alkyl, C3-8-cyclo-alkyl, C2-10-alkenyl, aryl, OR6, NR7R8 or SR9, R6, R7, R8, R9 and R10 can be the same or different and can be hydrogen, C1-30-alkyl, C3-8-cycloalkyl, C2-10-alkenyl or aryl, wherein C1-20-alkyl can be unsubstituted or substituted with one or more C3-8-cycloalkyl, C2-10-alkenyl, phenyl, halogen, OR11, NR12R13, SR14, SO3H or COOR15, and aryl can be unsubstituted or substituted with one or more halogen, C1-10-alkyl, halogenated C1-10-alkyl, C3-8-cycloalkyl C2-10-alkenyl, phenyl, OR11, NR12R13, SR14, SO3H or COOR15, wherein R11, R12, R13, R14 and R15 can be the same or different and can be hydrogen, C1-10-alkyl, C3-8-cycloalkyl or C2-10-alkenyl, a process for the preparation of these compositions, a process of coating substrates with these compositions, substrates coated with these compositions, a process for preparing marked substrates using these compositions, marked substrates obtainable by the latter process, and certain color developers.