摘要:
The present invention provides a method for updating and optimizing a treatment plan for radiotherapy. An initial treatment plan, calculated using a constraint-driven method, may be updated using a weighted-sum method, where Lagrange multipliers generated in the constraint method are reused as the weights for the weighted sum. This method results in acceptable updated treatment plans that are generated in a small fraction of the time taken to generate an entirely new treatment plan, reducing patient discomfort and ensuring the radiotherapy facility can treat more patients.
摘要:
Embodiments of the present invention provide a method of pre-approving a range of hypothetical spatial variations of the target whilst an initial treatment plan is generated. This allows the treatment plan to be later adapted to account for spatial variations of the target region falling within those pre-approved ranges, without going through time-consuming steps of quality assurance on the adapted plan.
摘要:
The present invention provides a method for updating and optimizing a treatment plan for radiotherapy. An initial treatment plan, calculated using a constraint-driven method, may be updated using a weighted-sum method, where Lagrange multipliers generated in the constraint method are reused as the weights for the weighted sum. This method results in acceptable updated treatment plans that are generated in a small fraction of the time taken to generate an entirely new treatment plan, reducing patient discomfort and ensuring the radiotherapy facility can treat more patients.
摘要:
The present invention therefore provides a method for the analysis of radiographic images, comprising the steps of acquiring a plurality of projection images of a patient, acquiring a surrogate signal indicative of the location of a target structure in the patient, reconstructing a plurality of volumetric images of the patient from the projection images, each volumetric image being reconstructed from projection images having a like breathing phase, identifying the position of the target structure such as a tumour in each volumetric image, associating a surrogate signal with each of the projection images, and determining a relationship between the surrogate signal and the position of the target structure. Multiple projection images having a like breathing phase can be grouped for reconstruction, to provide sufficient numbers for reconstruction. The analysis of the multiple values of the surrogate associated with each breathing phase can be used to determine the mean surrogate value and its variation. Multiple values of the surrogate signal associated with the same nominal breathing phase can be used to determine a mean value of the surrogate signal for the target position associated with that phase and a variation of the value of the surrogate signal for the target position associated with that phase. The breathing phase of specific projection images can be obtained by analysis of one or more features in the images, such as the method we described in U.S. Pat. No. (7,356,112), or otherwise.
摘要:
A radiotherapy system comprises a patient support, moveable along a translation axis, an imaging apparatus, comprising a first magnetic coil and a second magnetic coil, the first and second magnetic coils having a common central axis parallel to the translation axis, and being displaced from one another along the central axis to form a gap therebetween, the imaging apparatus being configured to obtain an image of a patient on the patient support and a source of radiation mounted on a chassis, the chassis being rotatable about the central axis and the source being adapted to emit a beam of radiation through the gap along a beam axis that intersects with the central axis, the beam having a first extent in a first direction parallel to the central axis, and a second, greater extent in a second direction transverse to the central axis.
摘要:
It is desirable to achieve a co-incident investigative kV source for a therapeutic MV source—a so-called “beams-eye-view” source. It has been suggested that bremsstrahlung radiation from an electron window be employed; we propose a practical structure for achieving this which can switch easily between a therapeutic beam and a beam-eye-view diagnostic beam capable of offering good image resolution. Such a radiation source comprises an electron gun, a pair of targets locatable in the path of a beam produced by the electron gun, one target of the pair being of a material with a lower atomic number than the other, and an electron absorber insertable into and withdrawable from the path of the beam. In a preferred form, the electron gun is within a vacuum chamber, and the pair of targets are located at a boundary of the vacuum chamber. The lower atomic number target can be Nickel and the higher atomic number target Copper and/or Tungsten. The electron absorber can be Carbon, and can be located within the primary collimator, or within one of a plurality of primary collimators interchangeably locatable in the path of the beam. Such a radiation source can be included within a radiotherapy apparatus, to which the present invention further relates. A flat panel imaging device for this source can be optimised for low energy x-rays rather than high energy; Caesium Iodide-based panels are therefore suitable.
摘要:
We propose that during the factory testing of the linac, rather than simply confirming that the beam falls within the permissible ranges set out in the standard, the beam is in fact adjusted towards a standard signature. A new (or existing) linac could then be paired to a new linac, or to an existing linac, such as one that it is to operate alongside or one that it is to replace. Treatment plans would then be transferable between such pairs of linacs. In addition, the standard signature to which the linacs were approximated could be placed towards the centre of the permitted ranges, to produce linacs that were more reliable over the very long term. This requires a linac that has automatically adjustable parameters, so that a suitable programmed computer is able to monitor the output of the linac and adjust its operating parameters. We therefore provide a radiation source comprising a linear accelerator, beam control circuitry for the linear accelerator, an electronic control apparatus for the control circuitry arranged to adjust properties thereof, and a monitor for detecting properties of the radiation beam produced by the linear accelerator, wherein the control apparatus is adapted to retain a set of beam properties and periodically activate the accelerator, measure the current beam properties via the monitor, compare the measured beam properties to the retained beam properties, and potentially adjust the control circuitry properties to align the beam properties towards the retained beam properties. The beam properties that are measured may include at least one of beam flatness and beam width. The retained beam properties can be the properties of the beam produced by the linear accelerator when new, or the properties of a standard beam. The control apparatus is preferably arranged to send a message if the difference between the measured beam properties and the retained beam properties exceeds a threshold. It may also send a message to a remote location if the difference between the measured beam properties and the retained beam properties exceeds a second threshold.
摘要:
Flat panel images obtained during concurrent radiotherapy typically suffer from artefacts that relate to the pulses of MV energy. For a radiotherapeutic apparatus comprising a pulsed source of therapeutic radiation, a detector comprising control circuitry, an array of pixel elements, each having a signal output and an ‘enable’ input and being arranged to release a signal via the signal output upon being triggered by the enable input, and an interpreter arranged to receive the signal outputs of the pixel elements, the interpreter having a reset control, there are advantages in the control circuitry being adapted to reset the interpreter after a pulse of therapeutic radiation, prior to enabling at least one pixel of the array. Alternatively, the control circuitry can prompt a plurality of pulses by the pulsed source and then enable a plurality of pixels of the array. In effect, the therapeutic pulses are grouped into a short flurry of pulses. It is therefore preferred that the plurality of pixels comprises substantially all the pixels of the array.
摘要:
Realtime beam shape adjustment in response to (for example) online CT scanning of a patient during treatment is assisted by the radiotherapy apparatus comprising a source adapted to emit a beam of therapeutic radiation, a collimator for delimiting the radiation beam, the collimator comprising a plurality of leaves arranged alongside each other and be moveable longitudinally so that the tips of the leaves define a variable edge of the collimator, the leaves being mounted on a support that is moveable laterally with respect to the leaves. In this way, movements of the tumour that are perpendicular to the direction of leaf motion can be accommodated by simply moving the collimator bodily so as to accommodate this. It is preferred that the apparatus also includes a control means adapted to receive information as to the location of the target volume, and, on the basis of that information, control the longitudinal positions of the leaves and the lateral position of the support. It is also preferred that the support tilts as it moves laterally along a path. This can be achieved, by example, by bearings that are moveable on suitable guides, or by mounting the support on a plurality of pivot arms of unequal lengths. The lengths of such pivot arms can be adjusted as necessary.
摘要:
A device is provided for connecting of a ring-shaped frame, which is adapted for fixation to the head of a patient during neurological diagnosis, therapy or surgery, to a supplementary equipment, for positioning of the frame and the equipment in a predetermined relation to each other. The frame comprises a connecting hole and the equipment comprises a connecting pin for insertion into the hole in the frame during positioning. The hole opens into a surface of the frame and has an enlarged portion, which preferably is diverging towards the surface of the frame, closest to the surface and a cylindrical portion beyond the diverging portion, whereas the connecting pin has a cross sectional dimension which is equal to or slightly smaller than the cross sectional dimension of the cylindrical portion in the hole.