Abstract:
A calibrator circuit and method for VCOM voltage adjustment for an LCD includes using integrated programmable resistive arrays. The method uses two DACs and three integrated circuit arrays to provide all of the advantages of VCOM calibrator circuits using external resistive voltage-dividers. The integrated circuit resistor arrays reduce the number of external components and PCB space. The method used is suitable for higher resolution adjustment of the VCOM voltage and no calculation is required in the whole adjustment procedure, which saves labor cost, time and enables automation of the calibrator fabrication.
Abstract:
A pass gate circuit includes a first transistor coupled between an input node (receiving an input signal) and an output node (outputting an output signal). A second transistor is configured to generate a voltage difference in response to a bias current flowing therethrough, wherein that voltage difference is applied between a first gate of the first transistor and the output node. A differential amplifier functions to compare the voltage at the output node to a reference voltage and generate the bias current in response to that comparison.
Abstract:
A level shifting circuit includes a current mirror that generates a first bias current and a second bias current (proportional to the first bias current with a first ratio). A first level shifter is coupled between a first input node (receiving a first input signal) and a first output node coupled to an input of the current mirror. The first level shifter applies a first voltage variation to the first input signal in response to the first bias current. A second level is coupled between a second input node (receiving a second input signal) and a second output node coupled to an output of the current mirror. The second level shifter applies a second voltage variation (associated with the first voltage variation) to the second input signal in response to the second bias current.
Abstract:
A Local Interconnect Network (LIN) driver circuit employs a charging/discharging current applied to the gate of a driver transistor coupled to an LIN bus. The charging current includes a constant charging current and an additional soft charging current, whereas the discharging current includes a constant discharging current and an additional soft discharging current. As a result of the soft charge/discharge components, there is a significant reduction in electromagnetic emission on the LIN bus.
Abstract:
A pass gate circuit includes a first transistor coupled between an input node (receiving an input signal) and an output node (outputting an output signal). A second transistor is configured to generate a voltage difference in response to a bias current flowing therethrough, wherein that voltage difference is applied between a first gate of the first transistor and the output node. A differential amplifier functions to compare the voltage at the output node to a reference voltage and generate the bias current in response to that comparison.
Abstract:
In one embodiment, a system for providing short circuit protection is disclosed. The system has a supply circuit and a series switch. The supply circuit has a supply input and a supply output, and is configured to deliver an output current at the supply output, and to disable the supply output if the output current exceeds a first current limit. The series switch coupled between the supply output of the supply circuit and a supply node, and the supply node is configured to be coupled to a load.
Abstract:
In one embodiment, a method for converting an analog input value to a digital output value is disclosed. A successive approximation is performed. The analog input is quantized to a first quantized value, which is converted to a first analog value using a DAC. The first analog value is subtracted from the analog input value to form a first residue. The first residue is quantized to form a second quantized value, and a second residue is formed by converting the second quantized value to a second analog value using the DAC and subtracting the second analog value from the first residue value. The second residue is then quantized to form a third quantized value. The first, second and third quantized values are converted into a digital output value. The first, second and third quantized values each have at least three levels.
Abstract:
In one embodiment, a method for converting an analog input value to a digital output value is disclosed. A successive approximation is performed. The analog input is quantized to a first quantized value, which is converted to a first analog value using a DAC. The first analog value is subtracted from the analog input value to form a first residue. The first residue is quantized to form a second quantized value, and a second residue is formed by converting the second quantized value to a second analog value using the DAC and subtracting the second analog value from the first residue value. The second residue is then quantized to form a third quantized value. The first, second and third quantized values are converted into a digital output value. The first, second and third quantized values each have at least three levels.
Abstract:
Circuits and methods to realize a power-efficient high frequency buffer. The amplitude of a buffered signal is detected and compared with the amplitude of the input signal. The comparison result can be fed back to the digitally-controlled buffer to keep the output gain constant. By using feedback control, the buffer can be kept at the most suitable biasing condition even if the load condition or signal frequency varies.
Abstract:
For voltage interpolation amplifiers used in digital-to-analog converter architecture, the number of input differential pairs required by the voltage interpolation amplifier may be reduced such that an N-bit voltage interpolation amplifier comprises N+1 input differential pairs connected through a resistor attenuation network to provide a binary-weighted effective transconductance. In comparison to conventional voltage interpolation amplifier designs, the number of input differential pairs and power consumed by the circuit is significantly reduced, thereby creating a more area- and power-efficient voltage interpolation amplifier.