Abstract:
Method and arrangement in a network entity for supporting link adaptation in a wireless communication system. The method comprises obtaining 204 one or more predicted parameters related to the quality of a radio link. The method further comprises measuring 206 one or more actual parameters, corresponding to the one or more predicted parameters. The method further comprises deriving 208 one or more error distributions based on the difference between the predicted and actual one or more parameters, from which error distributions a link adaptation margin estimate is derived, based on a predetermined radio link quality target. The link adaptation margin estimate is then used for supporting link adaptation for the radio link.
Abstract:
A method and network node (110, 120, 140) for determining an offset for selection of a cell of a first radio network node (110) is provided. The network node (110, 120, 140) comprises a processing circuit configured to determine the offset based on a first distance value for indicating distance between the first radio network node (110) and a second radio network node (120). The network node (110, 120, 140) further comprises a transmitter configured to send information about the offset.
Abstract:
Method and arrangement in a mobile terminal for predicting future data communication performance of transmissions between a base station and the mobile terminal. The base station and the mobile terminal are comprised in a wireless communication system. The method comprises receiving information from the base station, concerning the relation between distribution characteristics and the performance of established data communications via the base station, comparing the own distribution characteristics of the mobile terminal with the received information, determining the own predicted data communication performance based on the made comparison between the own distribution characteristics and the received information, and displaying the determined own predicted data communication performance on a display of the mobile terminal. Also, a method and arrangement in a base station for assisting a mobile terminal in predicting future data communication performance of transmissions is comprised.
Abstract:
According to teachings presented in this document, reported channel quality information, as used for controlling one or more aspects of wireless transmission, is compensated according to an aging function that depends on channel variability. In this manner, the “amount” or extent of age-based compensation applied to the channel quality feedback for a given user—e.g., a mobile station or other item of user equipment—varies as function of that user's channel conditions. More particularly, in an advantageous approach, the aging function applied to the channel quality estimates received from a given user depends on estimates of that user's channel variability. Channel quality estimates from (or generated for) a user whose channel conditions are changing very little, or at least are changing very slowly, may be aged less aggressively than those associated with a user whose channel conditions are changing more rapidly.
Abstract:
System and method for controlling the transmit power of a mobile terminal. In some embodiments, a transmit power correction factor for a mobile terminal is set to the average transmit power correction factor for all active mobile terminals in the same cell as the mobile terminal.
Abstract:
Route selection through a wireless mesh network between a source node and a destination node is based on minimizing generated interference in order to increase the capacity of the network. An interference energy associated with transmitting a packet over each hop in multiple routes from the source node to the destination node is determined. The interference energy for each hop is combined to generate a combined interference energy for each route. One of the routes is selected based on the combined interference energy determined for each route.
Abstract:
The present invention relates to a method, device and system for handling short data packets, such as speech packets, in a communications network, and in particular a wireless local area network. The present invention is based on collecting several data packets from several users active on the network in one data transmittal protocol packet, transmitting this protocol, and receiving the protocol wherein the each of the several data packets are addressed to specific destinations. This reduces the overhead/data ratio and thus increases the capacity of the network.
Abstract:
Route selection through a wireless mesh network between a source node and a destination node is based on minimizing generated interference in order to increase the capacity of the network. An interference energy associated with transmitting a packet over each hop in multiple routes from the source node to the destination node is determined. The interference energy for each hop is combined to generate a combined interference energy for each route. One of the routes is selected based on the combined interference energy determined for each route.
Abstract:
A broadcast channel, such as a broadcast control channel that carries a short message service, in a GSM/EDGE or similar communication system can be extended with additional timeslots. These additional timeslots can be pointed out in a tree structure, the root of which is in the SMS broadcast channel. The extended broadcast channel can be used for broadcast-like services provided under a multimedia broadcast/multicast service.
Abstract:
The object of the present invention is to reduce interference and power consumption of a repeater operated in a wireless communication network. According to the present invention this object is achieved by a self-optimizing repeater (10) for use in a wireless communication network using predetermined carrier communication resources per cell. The self-optimizing repeater (10) comprises an amplifier (12) adapted to amplify a first subset of communication resources selected from, the carrier communication resources, a monitoring unit (14) adapted to monitor traffic load on the first subset of communication resources, and an adjustment unit (16) adapted to adjust the first subset of communication resources as a function of the monitored traffic load. The operation of the self-optimizing repeater is fully transparent and no control signaling is necessary to control the self-optimizing repeater.