Abstract:
A gas turbine engine having an electric generator includes a transmission shaft extending along a longitudinal axis of the engine and drivingly interconnecting a turbine shaft of the engine and a rotor shaft of the electric generator. The transmission shaft is engaged by splined mating connections with the turbine shaft and the rotor shaft. The transmission shaft has a shear neck defining a reduced radial wall thickness with respect to a remainder of the transmission shaft such as to provide a weakened region of the transmission shaft. An annular support structure, concentric with and surrounding the transmission shaft, is axially located between the shear neck and a forward end of the transmission shaft engaged to the turbine shaft, and includes a bearing operable to rotationally support the transmission shaft.
Abstract:
An airfoil blade of a gas turbine engine includes a root configured for mating attachment with a cooperating rotor hub and an airfoil extending away from the root. The root is composed of a first metal and has a nanocrystalline metal coating, composed of a second metal, over at least a portion thereof. A method of protecting such a blade by applying a nanocrystalline metal coating to a portion of the blade root is also disclosed.
Abstract:
An engine casing for a gas turbine engine, such as, but not limited to, a gas turbine engine fan case, is disclosed which includes an annular case shell formed of a substrate material that is at least partially coated by a nanocrystalline metal coating. A method of manufacturing such an engine casing is also provided. The present engine casing provides improved containment capability in the event of a blade release or other failure during operation of the engine.
Abstract:
A vane for a vane assembly of a gas turbine engine includes a vane root connected to the airfoil portion opposite a tip thereof. The vane root includes a platform and a button portion interconnecting the platform and the airfoil position. The button portion has relatively blunt leading and trailing ends which respectively protrude beyond leading and trailing edges of the airfoil portion.
Abstract:
A method of protecting a blade of a gas turbine engine by applying a nanocrystalline metal coating to a portion of the blade root is disclosed, which includes preparing at least a portion of a dovetail of the blade root for coating; and then applying a nanocrystalline metal coating to said portion.
Abstract:
A method of applying a nanocrystalline coating to a gas turbine engine component is described. The method comprises the steps of applying an intermediate bond coat to at least a portion of the component, and then applying the nanocrystalline coating to at least the portion of the component overtop of the intermediate bond coat. The component may include, for example, a blade of which a dovetail portion of the blade root is protected by applying the intermediate bond coat and the nanocrystalline coating thereto.
Abstract:
A fan case for a gas turbine engine is provided to prevent water from pooling and freezing inside the fan case when the gas turbine is not in operation, and potentially prevent the engine from starting and/or cause engine damage. The fan case is therefore adapted to provide a drainage system allowing water to freely escape the fan case without compromising the structural integrity of the fan case. The fan case comprises: a hollow body; an abradable liner disposed inside the hollow body; a flange on the hollow body defining a surface for mating to a forward part of the engine; and, a first radial slot extending across the mating surface of the hollow body. The abradable liner has an inside surface for circumscribing the fan blades wherein the first radial slot is in a free-draining relation with the inside surface of the abradable liner.
Abstract:
A fan rotor has a fan web and a plurality of circumferentially spaced-apart fan blades extending radially outwardly from an outer rim of the fan web. The outer rim is integrally connected to an inner rim through an axially facing web section. The web section has an inward concavature and extends aft of the center of gravity of the fan blades to shift the center of gravity of the hub rearwards while maintaining airfoil stress below critical levels. The rim section may have an inwardly projecting annular channel formed in a leading edge thereof and tuned to the 2M3ND mode of the fan hub.
Abstract:
The method is used for making an annular gas turbine engine case from a preform. The method comprises comprising flowforming at least one section of the preform, and then outwardly bending at least one portion of the perform.
Abstract:
A vane for a vane assembly of a gas turbine engine includes a vane root connected to the airfoil portion opposite a tip thereof. The vane root includes a platform and a button portion interconnecting the platform and the airfoil position. The button portion has relatively blunt leading and trailing ends which respectively protrude beyond leading and trailing edges of the airfoil portion.