Abstract:
A component for a gas turbine engine includes an airfoil section including a free end and an abrasive coating sprayed onto the free end, the abrasive coating including a polymer matrix and an abrasive filler, the abraisive filler between about 50%-75% by volume of the abrasive coating.
Abstract:
Using the systems and methods discussed herein, CMAS corrosion is inhibited via CMAS interception in an engine environment and/or is prevented or reduced by the formation of a metal oxide protective coating on a hot engine section component. The CMAS interception can occur while the engine is in operation in flight or in a testing or quality control environment. The metal oxide protective coating can be applied over other coatings, including Gd-zirconates (GZO) or yttria-stabilized zirconia (YSZ). The metal oxide protective coating is applied at original equipment manufacturers (OEM) and can also be applied in-situ using a gas injection system during engine use in-flight or during maintenance or quality testing. The metal oxide protective coating contains a rare earth element, aluminum, zirconium, chromium, or combinations thereof and can have a thickness from 1 nm to 3,000 nm.
Abstract:
A thermal barrier coating includes a highly porous layer and a dense layer. The highly porous layer is formed on a heat-resistant base, is made of ceramic, has pores, has a layer thickness of equal to or larger than 0.3 mm and equal to or smaller than 1.0 mm, and has a pore ratio of equal to or higher than 1 vol % and equal to or lower than 30 vol %. The dense layer is formed on the highly porous layer, is made of ceramic, has a pore ratio of equal to or lower than 0.9 vol % that is equal to or lower than the pore ratio of the highly porous layer, and has a layer thickness of equal to or smaller than 0.05 mm.
Abstract:
An airfoil blade of a gas turbine engine includes a root configured for mating attachment with a cooperating rotor hub and an airfoil extending away from the root. The root is composed of a first metal and has a nanocrystalline metal coating, composed of a second metal, over at least a portion thereof. A method of protecting such a blade by applying a nanocrystalline metal coating to a portion of the blade root is also disclosed.
Abstract:
A refractory material that can withstand high temperatures in an oxidizing medium and containing at least: a first constituent corresponding to hafnium, or to a non-oxide compound of hafnium, or circular in a or a non-oxide compound of zirconium, or corresponding to a mixture of at least two metals and/or compounds selected from hafnium a non-oxide compound of hafnium, zirconium, and a non-oxide compound of zirconium; a second constituent corresponding to the boron or to a non-oxide compound of boron, or corresponding to a mixture of boron and a non-oxide compound of boron; and a third constituent corresponding to a rare earth RE or to a non-oxide compound of the rare earth RE, or corresponding to a mixture of rare earth RE and a non-oxide compound of the rare earth RE, where RE is selected from scandium, yttrium, and the lanthanides. The material contains neither silicon nor a compound of silicon.
Abstract:
A gas turbine component and a method for producing an anti-erosion coating system are disclosed. The gas turbine component includes a basic material, on which an anti-erosion coating system is provided that is a multilayer system including at least one ductile metal layer and at least one hard, ceramics-containing layer for forming a partial anti-erosion system. At least one anti-corrosion layer that has a lower electrochemical potential than the basic material is provided between the partial anti-erosion system and the basic material, thus providing cathodic corrosion protection.
Abstract:
The present invention is a turbine engine component comprising a superalloy substrate, a bond coat overlying the substrate having a thickness in the range of about 0.0005 inch to about 0.005 inch, a thin alumina scale overlying the bond coat, and a thermal barrier coating (TBC) overlying the thin alumina scale, the TBC having a thickness in the range of about 0.0025 inch to about 0.010 inch, and comprising at least mischmetal oxide.
Abstract:
The present invention is a turbine engine component comprising a superalloy substrate, a bond coat overlying the substrate having a thickness in the range of about 0.0005 inch to about 0.005 inch, a thin alumina scale overlying the bond coat, and a thermal barrier coating (TBC) overlying the thin alumina scale, the TBC having a thickness in the range of about 0.0025 inch to about 0.010 inch, and comprising at least mischmetal oxide. The present invention is also a method for the application of a thermal barrier coating to a superalloy turbine engine component comprising the steps of: providing an electron beam physical vapor deposition apparatus, providing a turbine engine component comprising a surface to be coated, providing an oxide ingot comprising mischmetal oxide and another oxide material selected from the group consisting of yttria-stablized zirconia, zirconia, yttria, hafnia, at least one other rare earth oxide, and combinations thereof, placing the component and the ingot into the apparatus, drawing a vacuum within the apparatus, forming a melt pool on the ingot, dispersing mischmetal oxide vapors and yttria-stabilized zirconia vapors, depositing the mischmetal oxide vapors and the yttria-stabilized zirconia vapors onto the surface to be coated, said deposition forming a thermal barrier coating having a thickness in the range of about 0.0025 inch to about 0.010 inch.
Abstract:
A coating material, particularly a thermal barrier coating, for a component intended for use in a hostile environment, such as the superalloy turbine, combustor and augmentor components of a gas turbine engine. The coating material is zirconia that is partially stabilized with yttria and to which lanthana, neodymia and/or tantala are alloyed to increase the impact resistance of the coating.
Abstract:
A process for forming a thermal barrier coating system on a substrate is disclosed including preparing a slurry including a donor powder, an activator powder, and a binder. The donor powder includes a metallic aluminum alloy having a melting temperature higher than aluminum, and the binder includes at least one organic polymer gel. The process further includes applying the slurry to the substrate, heating the slurry to form an aluminide bond coating including an additive aluminide layer and an aluminide interdiffusion zone disposed between the substrate and the additive aluminide layer, and applying a thermal barrier coating to the aluminide bond coating. The thermal barrier coating may be a dense vertically-cracked thermal barrier coating, and the substrate may be a gas turbine component. Thermal barrier coating systems formed by the process are also disclosed.