Abstract:
Provided are resistive materials for a microbolometer, a method for preparation of resistive materials and a microbolometer containing the resistive materials. The resistive materials for the microbolometer include an alloy of silicon and antimony or an alloy of silicon, antimony and germanium, which has a high TCR and a low resistance.
Abstract:
Provided are a Phase-change Random Access Memory (PRAM) device and a method of manufacturing the same. In particular, a PRAM device including a heating layer, wherein the heating layer comprises first and second heating layers having different physical properties from each other and a method of manufacturing the same are provided. Since the PRAM device according to the present invention includes a heating layer having optimal heating characteristics, a PRAM device having high reliability and excellent operating characteristics can be manufactured.
Abstract:
The present invention relates to structures of a high voltage device and a low voltage device formed on a SOI substrate and a method for manufacturing the same, and it is characterized in which the low voltage device region of silicon device regions in a SOI substrate is higher than the high voltage device region by steps, and a thickness of the silicon device region, where the high voltage device is formed, is equal to a junction depth of impurities of a source and drain in the low voltage device. Accordingly, silicon device regions in the SOI substrate are divided into the high voltage region and the low voltage region and steps are formed there between by oxidation growth method, so that the high voltage device having low junction capacitance can be made, and the low voltage device compatible with the conventional CMOS process and device characteristics can also be made at the same time.
Abstract:
A ferroelectric memory device including a single ferroelectric transistor that one unit memory cell is independently selected and programmed, when the unit memory cell is programmed for “the first state” or “the second state” by applying a DC bias voltage to the single ferroelectric transistor's gate and well. In addition, the ferroelectric memory device can be applied with normal power level Vdd and GND. The ferroelectric memory device includes a plurality of unit memory cells which are arranged in a matrix, by crossing at least one word line in a column direction with a plurality of bit lines and source lines in a row direction and is connected between the source line and the bit line.
Abstract:
Disclosed are an inverter, a NAND gate, and a NOR gate. The inverter includes: a pull-up unit constituted by a second thin film transistor outputting a first power voltage to an output terminal according to a voltage applied to a gate; a pull-down unit constituted by a fifth thin film transistor outputting a ground voltage to the output terminal according to an input signal applied to a gate; and a pull-up driver applying a second power voltage or the ground voltage to the gate of the second thin film transistor according to the input signal.
Abstract:
The inventive concept provides organic light emitting diodes and methods of manufacturing an organic light emitting diode. The organic light emitting diode includes a substrate, a first electrode layer and a second electrode layer formed on the substrate, an organic light emitting layer disposed between the first electrode layer and the second electrode layer and generating light, and a scattering layer between the first electrode layer and the substrate or between the first electrode layer and the organic light emitting layer. The scattering layer scatters the light.
Abstract:
Provided are a humidity sensor and a method of manufacturing the same. The humidity sensor has high sensitivity, quick response time, improved temperature characteristics, low hysteresis and excellent durability. Moreover, for the humidity sensor, a humidity sensitive layer may be formed of various materials. The humidity sensor may be manufactured in a small size on a large scale.The humidity sensor includes a substrate, an open cavity with an open upper portion formed to have a depth and a width in the substrate, a plurality of electrode pads formed on the substrate, a heater connected to one pad of the electrode pads at one end, and connected to another pad of the electrode pads at the other end to be suspended over the open cavity, a plurality of sensing electrodes formed on the same plane as the heater, and suspended over the open cavity to output a sensed signal to the electrode pads, a humidity sensitive layer formed on the heater and the sensing electrodes, suspended over the open cavity, and changed in characteristic according to the humidity, and an ambient temperature measurement part configured to measure the temperature around the humidity sensor, wherein the temperature is used as a reference temperature to control a heating temperature of the heater.
Abstract:
An embedded memory required for a high performance, multifunction SOC, and a method of fabricating the same are provided. The memory includes a bipolar transistor, a phase-change memory device and a MOS transistor, adjacent and electrically connected, on a substrate. The bipolar transistor includes a base composed of SiGe disposed on a collector. The phase-change memory device has a phase-change material layer which is changed from an amorphous state to a crystalline state by a current, and a heating layer composed of SiGe that contacts the lower surface of the phase-change material layer.
Abstract:
Provided are a microbolometer having a cantilever structure and a method of manufacturing the same, and more particularly, a microbolometer having a three-dimensional cantilever structure, which is improved from a conventional two-dimensional cantilever structure, and a method of manufacturing the same. The method includes providing a substrate including a read-out integrated circuit and a reflective layer for forming an absorption structure, forming a sacrificial layer on the substrate, forming a cantilever structure having an uneven cross-section in the sacrificial layer, forming a sensor part isolated from the substrate by the cantilever structure, and removing the sacrificial layer.
Abstract:
Provided are a humidity sensor and a method of manufacturing the same. The humidity sensor has high sensitivity, quick response time, improved temperature characteristics, low hysteresis and excellent durability. Moreover, for the humidity sensor, a humidity sensitive layer may be formed of various materials. The humidity sensor may be manufactured in a small size on a large scale.The humidity sensor includes a substrate, an open cavity with an open upper portion formed to have a depth and a width in the substrate, a plurality of electrode pads formed on the substrate, a heater connected to one pad of the electrode pads at one end, and connected to another pad of the electrode pads at the other end to be suspended over the open cavity, a plurality of sensing electrodes formed on the same plane as the heater, and suspended over the open cavity to output a sensed signal to the electrode pads, a humidity sensitive layer formed on the heater and the sensing electrodes, suspended over the open cavity, and changed in characteristic according to the humidity, and an ambient temperature measurement part configured to measure the temperature around the humidity sensor, wherein the temperature is used as a reference temperature to control a heating temperature of the heater.