Abstract:
A protocol circuit layer is described. The protocol circuit layer may employ a routing layer to determine optimal routes when establishing a circuit. The circuit layer may employ a link layer to send data packets over links to other network nodes. A naming layer may employ circuits to establish a distributed database of associations between network node addresses and their network locations.
Abstract:
A facility for congestion management and latency prediction is described. In various embodiments, the facility sums a series of fractional transmission delays wherein each fractional transmission delay is measured as a probability of a failed transmission attempt multiplied by the cost of the failed transmission attempt, and provides the sum.
Abstract:
A facility for performing employing multiple frequencies in a secure distributed hierarchical convergence network is described. The facility receives a signal in a first frequency, converts the received signal to an internal representation, applies a business rule to the converted signal, and, when the business rule indicates that the signal should be transmitted in a second frequency, causes the internal representation of the signal to be translated to a second frequency and transmitted in the second frequency.
Abstract:
Techniques for sharing network information, such as routing table information, are described. In some examples, network nodes share information about the topology of their network. For example, nodes may share routing tables with their neighbors from time to time. To improve the performance of the network, by reducing the overhead of transmitting routing tables, the nodes share their routing tables with neighbor nodes only when those tables are updated or upon request. In other circumstances, such as when a routing table has not changed since it was last shared, each network node instead transmits an indicator, such as a routing table checksum, hash, or the like, that can be used by a neighbor node to determine the routing table is unchanged.
Abstract:
A facility for performing employing multiple frequencies in a secure distributed hierarchical convergence network is described. The facility receives a signal in a first frequency, converts the received signal to an internal representation, applies a business rule to the converted signal, and, when the business rule indicates that the signal should be transmitted in a second frequency, causes the internal representation of the signal to be translated to a second frequency and transmitted in the second frequency.
Abstract:
A protocol circuit layer is described. The protocol circuit layer may employ a routing layer to determine optimal routes when establishing a circuit. The circuit layer may employ a link layer to send data packets over links to other network nodes. A naming layer may employ circuits to establish a distributed database of associations between network node addresses and their network locations.
Abstract:
Techniques for managing congestion in a computer network are described. In some examples a network node uses a dynamic moving average to determine a level of network congestion a computer network. The dynamic moving average uses a window that is dynamically resized based on the contents of the window. For example, when the contents of the half of the window containing older samples are sufficiently different from the contents of the half of the window containing newer samples, the older samples are discarded and an average is calculated using just the newer samples.
Abstract:
A unifying network model with a structure and architecture configured to address security, interoperability, mobility, and resource management, including priority and quality of services is provided. The network of the network model is structured as a hierarchical mesh network, with dynamically generated routing tables. The configuration of the network model optimizes routing and distributes communication load. Every device on the network is capable of being both an endpoint and a forwarder of communications. The network model may include underlying networks that are represented with one of two models, the link model or the star model. The nodes are organized in a hierarchical relationship structure to optimize throughput. The model may include a cryptographic method of dynamically assigning local network addresses.
Abstract:
Embodiments communicate messages between mobile devices and destination devices. An exemplary embodiment includes a first border server operable to establish a first communication connection to the mobile device over a first network operating under a first protocol, a second border server operable to establish a second communication connection to the mobile device over a second network operating under a second protocol, and a transport management server communicatively coupled to the first border server and the second border server, and operable to establish a third communication connection to the destination device over a third network operating under a third protocol. The first protocol is configured to communicate a first encapsulated portion of the message. The second protocol is configured to communicate a second encapsulated portion of the message. The third protocol is configured to communicate the first encapsulated portion of the message and the second encapsulated portion of the message.
Abstract:
Embodiments communicate messages between mobile devices and destination devices. An exemplary embodiment includes a first border server operable to establish a first communication connection to the mobile device over a first network operating under a first protocol, a second border server operable to establish a second communication connection to the mobile device over a second network operating under a second protocol, and a transport management server communicatively coupled to the first border server and the second border server, and operable to establish a third communication connection to the destination device over a third network operating under a third protocol. The first protocol is configured to communicate a first encapsulated portion of the message. The second protocol is configured to communicate a second encapsulated portion of the message. The third protocol is configured to communicate the first encapsulated portion of the message and the second encapsulated portion of the message.