Abstract:
A CMOS image sensor capable of improving characteristics of the image sensor by preventing damage to a photodiode region and a method for manufacturing the same are provided. The CMOS image sensor includes: a semiconductor substrate on which a device isolation region and an active region are defined; a photodiode region formed at the active region; a conductive plug formed on the photodiode region for connecting the photodiode region to a metal wiring; and a transistor formed enclosing the conductive plug.
Abstract:
An image sensor and a method for manufacturing the same are provided. The image sensor comprises a readout circuitry, an interlayer dielectric, an interconnection, and a CuInGaSe2 (CIGS) image sensing device. The readout circuitry is disposed on a first substrate. The interlayer dielectric is disposed over the first substrate. The interconnection is in the interlayer dielectric and electrically connected to the readout circuitry. The CIGS image sensing device is disposed over the interconnection and electrically connected to the readout circuitry through the interconnection.
Abstract:
An image sensor and a method for manufacturing the same are provided. The image sensor comprises a readout circuitry, a first interlayer dielectric with an interconnection therein, a second interlayer dielectric, an image sensing device, and a contact plug. The readout circuitry is formed in a first substrate. The first interlayer dielectric is formed over the first substrate. The interconnection is electrically connected to the readout circuitry. The second interlayer dielectric is formed over the first interlayer dielectric. The image sensing device comprises a first laser annealed trench and is disposed over the second interlayer dielectric. The contact plug penetrates the first laser annealed trench and the second interlayer dielectric and electrically connects the image sensing device and the interconnection.
Abstract:
An organic/inorganic composite separator includes a porous substrate having a plurality of pores; and a porous coating layer formed on at least one surface of the porous substrate with a plurality of inorganic particles and a binder polymer. The binder polymer is a copolymer including: (a) a first monomer unit having a contact angle to a water drop in the range from 0° to 49°; and (b) a second monomer unit having a contact angle to a water drop in the range from 50° to 130°. This organic/inorganic composite separator has excellent thermal stability, so it may restrain an electric short circuit between a cathode and an anode. In addition, the separator may prevent inorganic particles in the porous coating layer from being extracted during an assembling process of an electrochemical device, thereby improving stability of an electrochemical device.
Abstract:
The present invention relates to a shoelace accessory provided to a shoelace to create an aesthetic appearance on the midfoot portion of a shoe while preventing the shoelace from being loosened, by preventing respective ornamental elements, threaded on the shoelace, from being moved or deformed. The shoelace is inserted through pairs of eyelets of an eyestay provided to the midfoot portion of a shoe so that the shoelace can be tightened and loosened to allow the shoe to be secured around a wearer's foot in conformity with a size of the foot, ornamental elements are threaded on the shoelace such that they are respectively placed between the respective pairs of eyelets and are positioned side by side in a rearward direction so as to independently or cooperatively provide an aesthetic appearance, and stoppers are integrally formed on surfaces of the ornamental elements.
Abstract:
Disclosed is a floating gate of a flash memory device, wherein a tunneling oxide layer is formed on a semiconductor substrate, and a floating gate is formed in the shape of a lens having a convex top surface.
Abstract:
Disclosed are a CMOS image sensor and a manufacturing method thereof. The method includes the steps of: forming an isolation layer on a semiconductor substrate, defining an active region that includes a photo diode region and a transistor region; forming a gate in the transistor region, the gate including a gate electrode and a gate insulating layer; forming a first low-concentration diffusion region in the photo diode region; forming a second low-concentration diffusion region in the transistor region; forming a buffer layer over the substrate, the buffer layer covering the photo diode region; forming first and second insulating layers over the entire surface of the substrate, the first and second insulating layer having a different etching selectivity from each other; forming an insulating sidewall on sides of the gate electrode by selective removal of the second insulating layer; removing the first insulating layer from the transistor region; forming a high-concentration diffusion region in the exposed transistor region, partially overlapping the second low-concentration diffusion region; and forming a metal silicide layer on the high-concentration diffusion region.
Abstract:
A CMOS image sensor and a method for fabricating the same are provided, in which an N type region of a photodiode is prevented from adjoining a device isolation film and a dark current is reduced. The CMOS image sensor includes an interlayer dielectric film formed between a gate poly and a power line, a contact formed in the interlayer dielectric film, and an epitaxial layer connected with the contact and formed only in a blue photodiode region.
Abstract:
A CMOS image sensor and a method for manufacturing the same are disclosed, in which a blue photodiode is imparted with a greater thickness to improve sensitivity of blue light. The blue photodiode of a CMOS image sensor includes a first lightly doped P-type epitaxial layer formed on a heavily doped P-type semiconductor substrate; a gate electrode of a transfer transistor formed on the first epitaxial layer; a first N-type blue photodiode region formed on the first epitaxial layer; and a second N-type blue photodiode region formed on the first epitaxial layer corresponding to the first blue photodiode region.
Abstract:
An image sensor may include a color filter layer on a semiconductor substrate; and a microlens on the color filter layer and including a non-photosensitive insulating layer.