Abstract:
A thin-film transistor (TFT) includes a gate electrode, a gate dielectric layer, a semiconductor layer, source/drain electrodes, a passivation layer and a protection layer. The gate electrode is disposed on a substrate. The gate dielectric layer covers the gate electrode and the substrate. The semiconductor layer is disposed on the gate dielectric layer and above the gate electrode. The semiconductor layer has a channel region disposed above the gate electrode and source/drain regions disposed at both sides of the channel region. The source/drain electrodes are disposed on the source/drain regions of the semiconductor layer and each has a barrier layer disposed on the source/drain regions of the semiconductor layer and a conductive layer disposed on the barrier layer. The passivation layer is disposed over the surface of the source/drain electrodes. The protection layer is disposed over the substrate, the passivation layer, and the channel region of the semiconductor layer.
Abstract:
An active device including a source, a drain, an oxide semiconductor layer, a gate and a gate insulator layer is provided. The source includes first stripe electrodes parallel to each other and a first connection electrode connected thereto. The drain includes second stripe electrodes parallel to each other and a second connection electrode connected thereto, wherein the first stripe electrodes and the second stripe electrodes are parallel to each other, electrically isolated, and alternately arranged, and a zigzag trench is formed therebetween. The gate extends along the zigzag trench. The oxide semiconductor layer is in contact with the source and drain, wherein a contact area among the oxide semiconductor layer and each first stripe electrodes substantially equals to a layout area of each first stripe electrodes and a contact area among each second stripe electrodes substantially equals to a layout area of each second stripe electrodes.
Abstract:
The present invention is correlated with a derivative of 18β-glycyrrhetinic acid apt to suppressing cancer cells, which is selected from a group comprising of structure I and structure II: wherein residue R1 is selected from one of CH3 and CH2C6H5, residue R2 is selected from one of COOCH3, COOCH2CH3, COOCH(CH3)2, CONHCH2CH3, CONHCH2CH2CH3, and CONHCH2(CH3)2, and residue R3 is selected from one of COOCH2CH3, COOCH(CH3)2, CONHCH2CH3, CONHCH2CH2CH3, and CONHCH2(CH3)2.
Abstract:
A semiconductor device and a manufacturing method thereof are provided. The semiconductor device includes a gate, a channel layer, a gate insulation layer, a source, a drain and a silicon-aluminum-oxide layer. The gate is disposed on a substrate. The channel layer is disposed on the substrate. The channel layer overlaps the gate. The gate insulation layer is disposed between the gate and the channel layer. The source and the drain are disposed on two sides of the channel layer. The silicon-aluminum-oxide layer is disposed on the substrate and covers the source, the drain and the channel layer.
Abstract:
The present invention is correlated with a derivative of 18β-glycyrrhetinic acid apt to suppressing cancer cells, which is selected from a group comprising of structure I and structure II: wherein residue R1 is selected from one of CH3 and CH2C6H5, residue R2 is selected from one of COOCH3, COOCH2CH3, COOCH(CH3)2, CONHCH2CH3, CONHCH2CH2CH3, and CONHCH2(CH3)2, and residue R3 is selected from one of COOCH2CH3, COOCH(CH3)2, CONHCH2CH3, CONHCH2CH2CH3, and CONHCH2(CH3)2.
Abstract translation:本发明与适于抑制癌细胞的18beta-甘草次酸的衍生物相关,其选自结构I和结构II:其中残基R1选自CH 3和CH 2 C 6 H 5之一,残基R 2选自 COOCH3,COOCH2CH3,COOCH(CH3)2,CONHCH2CH3,CONHCH2CH2CH3和CONHCH2(CH3)2之一,残基R3选自COOCH2CH3,COOCH(CH3)2,CONHCH2CH3,CONHCH2CH2CH3和CONHCH2(CH3)2之一。
Abstract:
A semiconductor device structure on a substrate and a manufacture method thereof is provided. The semiconductor device structure includes an oxide semiconductor transistor and a passivation layer containing free hydrogen. The semiconductor device structure is formed by following steps. A gate electrode is formed on the substrate. A gate dielectric layer covers the gate electrode. A source electrode is formed on the gate dielectric layer. A drain electrode is formed on the gate dielectric layer and separated from the source electrode and thereby forming a channel distance. An oxide semiconductor layer is formed on the gate dielectric layer, the source electrode and the drain electrode and between the source electrode and the drain electrode. The oxide semiconductor layer is further electrically connected with the source electrode and the drain electrode. A passivation layer covers the oxide semiconductor layer, the source electrode and the drain electrode. The passivation layer has a groove formed therein, and the groove surrounds the oxide semiconductor layer.
Abstract:
A pixel structure disposed on a substrate including a thin film transistor (TFT), a passivation layer, and a pixel electrode is provided. The TFT includes a gate, a dielectric layer, a channel layer, and a source/drain sequentially disposed on the substrate. The source/drain is disposed on a portion of the channel layer and has a semiconductor layer, a barrier layer and a metal layer. The barrier layer is disposed on a portion of the semiconductor layer. The metal layer is disposed on the barrier layer. The barrier layer is in contact with the semiconductor layer and the metal layer. Both of the metal layer and the barrier layer are positioned within a projection area of the semiconductor layer. The passivation layer covers the TFT and the dielectric layer and has a first opening exposing the source/drain. The pixel electrode is electrically connected to the TFT through the first opening.
Abstract:
A memory structure comprising a plurality of memory cells is described. Each memory cell comprises a substrate, a shallow trench isolation, a spacer, a tunnel oxide, and a floating gate. The shallow trench isolation in the substrate is used to define an active area. The spacer is at the sidewall of the shallow trench isolation and is higher than the shallow trench isolation. The tunnel oxide is on the active area. The floating gate is on the tunnel oxide.
Abstract:
A display element and a method of manufacturing the same are provided. The method comprises the following steps: forming a first patterned conducting layer with a gate on a substrate and a dielectric layer thereon; forming a patterned semiconductor layer on the dielectric layer, wherein the patterned semiconductor layer has a channel region, a source and a drain, and wherein the source and the drain lie on the opposite sides of the channel region; selectively depositing a barrier layer, which only wraps the patterned semiconductor layer; forming a second patterned conducting layer on the barrier layer and above the source and the drain. In the display element manufactured by the method, the barrier layer only wraps the patterned semiconductor layer.
Abstract:
A processing system connected to an apparatus includes a non-volatile memory (NVM) for storing firmware needed by the processing system; and an NVM control interface capable of writing and reading data stored in the NVM; wherein the NVM control interface reads a previous piece of data being already written into the NVM prior to a current piece of data and transmits the previous piece of data to the apparatus for comparison with original data that was previously written into the NVM, and the NVM control interface writes the current piece of data into the NVM.