Abstract:
DNAs are provided, whose genes are induced at least by Wnt-1. Also provided are nucleic acid molecules encoding those polypeptides, as well as vectors and host cells comprising those nucleic acid sequences, chimeric polypeptide molecules comprising the polypeptides fused to heterologous polypeptide sequences, antibodies which bind to the polypeptides, and methods for producing the polypeptides.
Abstract:
The present invention relates to methods for the treatment and repair of cartilage, including cartilage damaged by injury or degenerative cartilagenous disorders, including arthritis, comprising the administration of WISP polypeptide. Optionally, the administration may be in combination with one or more cartilage agents (e.g., peptide growth factor, catabolism antagonist, osteo-, synovial, anti-inflammatory factor). Alternatively, the method provides for the treatment and repair of cartilage damaged by injury or degenerative cartilagenous disorders comprising the administration of WISP polypeptide in combination with standard surgical techniques. Alternatively, the method provides for the treatment and repair of cartilage damaged by injury or degenerative cartilagenous disorders comprising the administration of chondrocytes previously treated with an effective amount of WISP polypeptide.
Abstract:
The present invention provides novel polypeptides, termed FCTRX polypeptides, as well as polynucleotides encoding FCTRX polypeptides and antibodies that immunospecifically bind to an FCTRX or a derivative, variant, mutant, or fragment of an FCTRX polypeptide, polynucleotide or antibody. The invention additionally provides methods in which the FCTRX polypeptide, polynucleotide and antibody are used in detection and treatment of a broad range of pathological states, as well as to other uses.
Abstract:
The present invention is directed to novel polypeptides having sequence similarity to Stra6, a murine retinoic acid responsive protein, and to nucleic acid molecules encoding those polypeptides. Also provided herein are vectors and host cells comprising those nucleic acid sequences, chimeric polypeptide molecules comprising the polypeptides of the present invention fused to heterologous polypeptide sequences, antibodies which bind to the polypeptides of the present invention and to methods for producing the polypeptides of the present invention.
Abstract:
The present invention is directed to novel polypeptides having sequence similarity to Stra6, a murine retinoic acid responsive protein, and to nucleic acid molecules encoding those polypeptides. Also provided herein are vectors and host cells comprising those nucleic acid sequences, chimeric polypeptide molecules comprising the polypeptides of the present invention fused to heterologous polypeptide sequences, antibodies which bind to the polypeptides of the present invention and to methods for producing the polypeptides of the present invention.
Abstract:
The present invention is directed to novel polypeptides having sequence similarity to Stra6, a murine retinoic acid responsive protein, and to nucleic acid molecules encoding those polypeptides. Also provided herein are vectors and host cells comprising those nucleic acid sequences, chimeric polypeptide molecules comprising the polypeptides of the present invention fused to heterologous polypeptide sequences, antibodies which bind to the polypeptides of the present invention and to methods for producing the polypeptides of the present invention.
Abstract:
A transgenic bacterial host cell that can be used as a screen for novel antibiotics and herbicides is provided. The genome of the transgenic bacterial host cell comprises disruptions in a first endogenous gene in the MEP pathway) and a transgene that functionally replaces the disrupted first gene. In other embodiments, the genome comprises a disruption in a first endogenous gene in the MEP pathway and a second endogenous gene which is located downstream of the first gene in the MEP pathway. A transgene that functionally replaces the disrupted downstream gene is cloned into the host cell. A mini operon containing the essential genes for the MVA pathway may also be cloned into the host cell. The transgenic host cell may be used in a method for screening compounds for antibiotic and herbicidal properties. The agents determined by the screening method may be used to kill bacteria or plants.
Abstract:
Human tissue plasminogen activator (t-PA) is produced in useful quantities using recombinant DNA techniques. The invention disclosed thus enables the production of t-PA free of contaminants with which it is ordinarily associated in its native cellular environment. Methods, expression vehicles and various host cells useful in its production are also disclosed.
Abstract:
A method for producing tissue plasminogen activator (t-PA) in eukaryotic host cells is disclosed. Enhanced levels of t-PA production are obtained by co-amplification of the t-PA gene through treatment of cultures transformed with mutant or wild-type DHFR with methotrexate.
Abstract:
Human tissue plasminogen activator (t-PA) is produced in useful quantities using recombinant DNA techniques. The invention disclosed thus enables the production of t-PA free of contaminants with which it is ordinarily associated in its native cellular environment. Methods, expression vehicles and various host cells useful in its production are also disclosed.