Abstract:
Methods and compositions for the development of effective cancer therapies using mitotic inhibitors which have limited general toxicity to normal, non-cancerous cells and tissues are provided. The methods and compositions utilize cytotoxic compounds comprised of a cell-binding agent (e.g., antibodies) conjugated to an anti-mitotic compound (e.g., maytansinoids). The invention further provides antibodies which are substantially incapable of inducing antibody-dependent cell-mediated cytotoxicity (ADCC) and/or complement dependent cytotoxicity (CDC), thereby ensuring that the therapeutic effect is mediated primarily by the anti-mitotic component of the cytotoxic compound, rather than by indirect cell killing via ADCC and/or CDC. The antibodies of the invention further are capable of differentiating between polypeptide antigens which are more highly expressed on proliferating cancer cells as compared to proliferating non-cancer cells.
Abstract:
A method for producing tissue plasminogen activator (t-PA) in eukaryotic host cells is disclosed. Enhanced levels of t-PA production are obtained by co-amplification of the t-PA gene through treatment of cultures transformed with mutant or wild type DHFR with methotrexate.
Abstract:
A method for producing tissue plasminogen activator (t-PA)in eukaroytic host cells is disclosed. Enhanced levels of t-PA production are obtained by co-amplification of the t-PA gene through treatment of cultures transformed with mutant or wild-type DHFR with methotrexate.
Abstract:
A method for producing tissue plasminogen activator (t-PA) in eukaryotic host cells is disclosed. Enhanced levels of t-PA production are obtained by co-amplification of the t-PA gene through treatment of cultures transformed with mutant or wild type DHFR with methotrexate.
Abstract:
Hepatitis surface antigen is synthesized in recombinant yeast hosts transformed with vectors encoding hepatitis surface antigen, preferably under the control of the yeast PGK promoter and preferably in the absence of DNA encoding the surface antigen precursor. Hepatitis surface antigen is assembled by yeast into antigenic 22 nm particles even though hepatitis surface antigen bacterial transformants were not known to be capable of assembling the surface antigen into 22 nm particles.
Abstract:
A method for producing tissue plasminogen activator (t-PA) in eukaryotic host cells is disclosed. Enhanced levels of t-PA production are obtained by co-amplification of the t-PA gene through treatment of cultures transformed with mutant or wild-type DHFR with methotrexate.
Abstract:
A method for producing tissue plasminogen activator (t-PA) in eukaryotic host cells is disclosed. Enhanced levels of t-PA production are obtained by co-amplification of the t-PA gene through treatment of cultures transformed with mutant or wild type DHFR with methotrexate.
Abstract:
A method for producing factor VIII in recombinant mammalian host cells utilizing an expression vector containing a selectable marker DNA and an amplifiable marker DNA. The initial selection is based upon the selectable marker and subsequent amplification of factor VIII DNA and amplifiable marker DNA is conducted in cells not deficient in the amplifiable marker.
Abstract:
Novel vaccines are provided for immunization against hepatitis B surface antigen wherein the surface antigen is present in 22nm form but contains only mature hepatitis B surface antigen.
Abstract:
A method for producing tissue plasminogen activator (t-PA) in eukaryotic host cells is disclosed. Enhanced levels of t-PA production are obtained by co-amplification of the t-PA gene through treatment of cultures transformed with mutant or wild-type DHFR with methotrexate.