Abstract:
A fibre-optic measurement device (10) includes a SAGNAC ring interferometer (20) having a proper frequency fp, a detector (14) and a modulation chain (30) generating a phase-shift modulation φm(t) between the two counter-propagating waves (24, 25) propagating in the ring interferometer. The device aims to reduce measurement faults due to the linearity defects in the modulation chain of such a measurement device with optical fibre. For this reason, the fibre-optic measurement device reduces the amplitude of the phase-shift modulation φm(t) which is the sum of a first biasing phase-shift modulation component φb1(t) and a first counter-reaction phase-shift modulation component φcr1(t), the phase-shift modulation φm(t) falling or rising by twice the amplitude of the first biasing phase-shift modulation component φb1(t). A rate gyro including such a measurement device and an inertial stabilization or navigation unit including at least one such rate gyro are also described.
Abstract:
Disclosed is an antenna support including: a base; at least one crown including a unit for securing an antenna element; a guide for guiding the crown in rotation around an axis of rotation; a drive for rotating the crown around the axis of rotation; and a unit for determining the angular position of the crown around the axis of rotation. The guide, the drive and the determining unit are mounted on the base on the outer side of the crown.
Abstract:
Disclosed is a system for underwater exploration using a submerged device towed by a surface vessel, the submerged device being connected to the vessel by a towing line and including equipment supplied by the electricity, characterized in that the submerged device includes at least one device for the local production of electrical energy, the device being an electric hydrogenerator and in that the towing line has no electrical supply cable connecting the vessel to the submerged device.
Abstract:
The invention relates to a system (1, 2) (1, 4) for handling marine (3) or underwater (5) drones, the system (1, 2) (1, 4) comprising a drone interface module (2, 4) and a floating pontoon (1) with two hulls (11) and an arch (10), the pontoon (1) is catamaran-shaped and delimits a downflooded reception space (17), the arch (10) comprises at least one device (12) for attachment to a winch cable, the pontoon (1) comprises devices (13) for detachable attachment to a drone interface module (2, 4) detachably and interchangeably installed in the receiving space (17), the drone interface modules (2, 4) forming an at least partially flooded docking area (23, 42) for the drone (3, 5), the drone interface modules (2, 4) have a lower portion (22, 43) configured to rest stably on a flat surface after the drone interface module (2, 4) has been removed from the pontoon (1).
Abstract:
Disclosed is a base ship that can receive, in a removable and interchangeable manner, a particular module among various modules, the module being adapted to a functional specialization of the ship. The base ship is similar to a catamaran in its rear portion because it includes two parallel rear lateral volumes that are substantially symmetric with respect to a vertical longitudinal sagittal plane of the base ship, and the removable module is inserted and secured between the two rear lateral volumes of the base ship in order to form a functionalized ship.
Abstract:
Disclosed is a passive shock-absorbing system for a sighting apparatus installed on a device including equipment generating the shocks, the system including two rigid plates substantially parallel to one another, via a first plate secured to the part of the device including the equipment and a second plate secured to the sighting apparatus, the plates being connected to one another by a position return component returning the plates to a determined relative rest position after absorbing a shock. The system is characterized in that the position return component includes a line-point-plane positioning unit with balls between the two plates and a set of elastic return members connecting the two plates to one another. A corresponding device is also desclosed.
Abstract:
Disclosed is a positioning system including: several inertial measurement units; at least one common sensor, providing a measurement of a positioning parameter of a system; for each inertial measurement unit, a navigation filter configured to: a) determine an estimate of the positioning parameter, on the basis of an inertial signal provided by the inertial measurement unit; and to b) correct the estimate, as a function of the measurement and of a correction gain that is determined on the basis of an augmented variance higher than the variance of a measurement noise of a common sensor; and—at least one fusion module determining a mean of the estimates, the mean being not reinjected at the input of the navigation filters. Also disclosed is an associated positioning method.
Abstract:
Disclosed is a method for driving the display of information on a screen banner equipping a boat wheelhouse control post, the control post including at least one image sensor oriented towards the bow of the boat. The method includes: —a step of acquiring, by means of each image sensor, an image representing the environment ahead of the boat, —a step of processing the image so as to detect each noteworthy zone of this image, and —a step of driving the screen banner so that its displays the image and, superimposed with this image, at least one graphic element distinguishing the noteworthy zone.
Abstract:
Disclosed is a floating structure for an autonomous watercraft with a keel deployed and recovered on a vessel. The longitudinally elongate structure includes a floating port-side and starboard lateral edges and a submersible bottom submerged when the structure is in the water, the lateral edges and the bottom defining an interior space at least partly submerged when the floating structure is in the water, the lateral edges defining a prow at the front and, at the rear, an opening towards the rear of the floating structure, which opening is downwardly limited by the submersible bottom with at least one longitudinally elongate slot open towards the rear for the passage of the keel, and the floating structure is configured in order that at least the front portion of the autonomous watercraft including the keel can engage by floating inside the interior space, with the keel engaging in the slot.
Abstract:
Disclosed is a hybrid inertial measurement system including a cold atom interferometric inertial sensor having a laser source generating a sequence of laser pulses towards a cold atom burst and a conventional inertial sensor attached to the inertial reference frame of the interferometric inertial sensor. The hybrid system includes a signal processing system suitable for receiving an inertial measurement signal from the conventional inertial sensor and for generating in real time a non-linear frequency modulation signal, the feedback loop electronic system being configured to modulate in real time the central optical frequency of the laser according to the modulation signal, such that the cold atom interferometric inertial sensor generates a first hybrid inertial measurement signal by atomic interferometry corrected for the relative movements of the inertial reference frame.