摘要:
In order to excite Lamb waves in a plate or container wall, an IDT transducer (interdigital transducer) is employed. The IDT comprises a layer composed of piezoelectric material, and on one of whose surfaces two electrodes which engage in one another like fingers are applied. The IDT is acoustically coupled to the plate or container wall by means of the surface facing away from the electrodes. If a radio-frequency AC voltage is applied to the connections of the electrodes, then a thickness vibration is initiated in the piezoelectric layer. If the speed of propagation or speed of sound of the longitudinal waves which result in this thickness vibration in the piezoelectric layer is matched to the phase velocity with which a s0 mode Lamb wave propagates in the material of the plate or of the container wall then only s0 mode Lamb waves are initiated by the resonance effect in the plate or container wall, by virtue of the acoustic coupling between the piezoelectric layer and the plate or container wall. The matching process can be carried out by selecting the distance (D) between the fingers of the electrodes such that this distance (D) is equal to half the wavelength &lgr;/2 of the thickness vibration to be initiated in the piezoelectric layer.
摘要:
The piezoelectric vortex sensing element (3, 3′, 3″, 3+) of this vortex flow sensor (1) can be assembled from individual components in a simple manner; if its piezoelectric element (34, 34′, 34″, 34*, 34+, 34++) should be faulty, it can be easily replaced. Also, the vortex sensing element can be made largely insensitive to vibrations acting from outside. The vortex flow sensor (1) serves to measure the flow velocity and/or the volumetric flow rate of a fluid flowing through a measuring tube (2). A bluff body (4) generating Kármán vortices is disposed along a diameter of the measuring tube and fixed to the measuring tube at at least one fixing point (41). The vortex sensing element responds to vortex-induced pressure fluctuations and either is installed in a wall (22) of the measuring tube down-stream of the bluff body in a tight manner or extends into a main bore (46) extending through the measuring tube into the bluff body. A diaphragm (33, 33″, 33+) covers the main bore (46) or the wall bore (22). At the surface (331) of the diaphragm facing toward the fluid, a sensor vane (31, 31″, 31+) or a sensor sleeve (31′, 31*) is fixed. The piezoelectric element is mechanically coupled to the surface (332) of the diaphragm remote from the fluid.
摘要:
An apparatus for establishing and/or monitoring a predetermined filling level in a container is provided, in which a reception signal (E) is equal to the measurement signal, and in which a fixed phase difference (.DELTA..phi..sub.R), which is independent of the oscillation quality of the apparatus, exists between a first transmission signal (S.sub.1), and a reception signal (E) at a resonant frequency (f.sub.r). The apparatus comprises a mechanical oscillatory structure (1) and a piezoelectric element (2), which has a first region (I) having a reception electrode (21), a second region (II) having a first transmission electrode (22) and a third region (III) having a second transmission electrode (23), the two transmission electrodes (22, 23) having an identical form and being arranged symmetrically with respect to one another and to the reception electrode (21), in the first and in the second region (I, II), the piezoelectric element having a polarization which is in the opposite direction to a polarization of the third region (III), and a first transmission signal (S.sub.1) being applied to the first transmission electrode (22), which first transmission signal has the same amplitude as and is in antiphase with a second transmission signal (S.sub.2), which is applied to the second transmission electrode (23).
摘要:
For monitoring a predetermined level of a liquid in a container an ultrasonic transducer is fitted on the outer surface of the container wall at a measurement point situated at the height of the level to be monitored. The ultrasonic transducer contains a piezoelectric element which generates, when excited by an alternating voltage pulse having a given transmission frequency, an ultrasonic transmission pulse which is transferred via a diaphragm to the container wall and which converts ultrasonic vibrations transferred from the container wall to the ultrasonic transducer into electrical reception signals. So that the piezoelectric element for given dimensions can be operated in a large frequency range, and so that a good adaptation to the diaphragm is achieved, the piezoelectric element consists of a porous piezoelectric ceramic having a type 3--3 connectivity.
摘要:
For monitoring a predetermined level of a liquid in a container an ultrasonic transducer is fitted on the outer surface of the container wall at a measurement point situated at the height of the level to be monitored. The ultrasonic transducer contains a piezoelectric element which generates, when excited by an alternating voltage pulse having a given transmission frequency, an ultrasonic transmission pulse which is transferred via a diaphragm to the container wall and which converts ultrasonic vibrations transferred from the container wall to the ultrasonic transducer into electrical reception signals. The diaphragm comprises on the side facing the container wall protuberances which adjoin the container wall. Between the diaphragm and the container wall a coupling layer is arranged, the thickness of which is determined by the height of the protuberances. As a result of this the formation of a layer of air between the diaphragm and the container wall is prevented and a jump in impedance avoided so that a good acoustical coupling exists between the diapragm and the container wall.
摘要:
A pressure measuring device having a pedestal, an intermediate piece of semiconductor arranged on the pedestal and, connected with the pedestal and arranged on the intermediate piece and connected with the intermediate piece, a semiconductor pressure sensor having a support and a measuring membrane, or diaphragm. The pressure measuring device offers reliable protection of the sensitive measuring membrane, or diaphragm, against mechanical distortions. Provided extending in the interior of the intermediate piece is an annular cavity, which surrounds a first cylindrical section and, pedestal end thereof, a second cylindrical section of the intermediate piece. The second cylindrical section has a greater outer diameter than the first cylindrical section. The cavity is open on an end of the intermediate piece toward the pedestal. The second cylindrical section has an end face facing the pedestal and lying on an end face of the pedestal, for forming a connecting area, via which the intermediate piece is mechanically connected with the pedestal.
摘要:
An apparatus for capacitive determining and/or monitoring of fill level of a medium in a container. The apparatus includes: A probe unit; a control unit, which supplies the probe unit with a drive signal; and an evaluating unit, which receives a response signal from the probe unit and which determines from the response signal a statement concerning fill level. Stored in the evaluating unit are at least a first and a second formula or a first and a second evaluating algorithm; and, in case accretion lies below a predetermined limit value, the evaluating unit determines the statement concerning fill level via a first formula and, in case accretion lies above the predetermined limit value, the evaluating unit determines the statement concerning fill level via a second formula.
摘要:
For minimizing the span error of a pressure sensor having an essentially cylindrical platform and a measuring membrane joined to an end face of the platform, wherein the pressure measuring cell is axially clamped between an elastic sealing ring, which bears against the membrane-containing, end face of the pressure measuring cell, and a support ring, which supports the measuring cell on the rear side thereof, the dimensions of the support ring are matched to the dimensions of the sealing ring and the pressure measuring cell in such a way that a radial deformation of the membrane-containing end face resulting from the axial clamping of the pressure measuring cell is sufficiently small that the span error of the pressure sensor because of a reduction of the axial clamping force by a least 10% amounts to not more than 0.02%. The geometry of the support ring is determined iteratively by means of the FEM.
摘要:
A description is given of a sturdy device for establishing and/or monitoring a predetermined filling level in a container, which device exhibits a housing (1), two oscillating rods (3, 4) projecting into the container, a first diaphragm (2) which is fixedly clamped, at its border, into the housing (1), a second diaphragm (6, 6') which is arranged parallel to said first diaphragm in the interior of the housing (1), a piezoelectric element (7, 7') which is arranged on the second diaphragm (6, 6') and is intended for receiving and converting oscillations into an electric output signal and for inducing bending oscillations in the second diaphragm (6, 6'), and in the case of which device the mode of oscillation produced by the piezoelectric element (7, 7') corresponds to the mode of oscillation utilized for inducing oscillation in the oscillating rods (3, 4).
摘要:
An ultrasonic piezoelectric transducer is alternatingly operated in a transmitting mode and in a receiving mode. In the transmitting mode an electrical excitation signal is applied between one or more common electrodes and one or more transmission electrodes, and in the receiving mode an electrical reception signal is collected between the one or more common electrodes and one or more reception electrodes. Moreover, in the receiving mode one or more electrodes which are not used as reception electrodes are connected via a low impedance connection with the one or more common electrodes which has the effect that in the receiving mode the resonance frequencies of the piezoelectric transducer are shifted to lower values so that with the same operating frequency the piezolectric transducer is in series resonance in the transmitting mode and in parallel resonance in the receiving mode. In this way, the piezoelectric transducer operates under optimum conditions with perfect frequency matching both for transmission and for reception.