Abstract:
A thin and compact liquid crystal display device includes a liquid crystal display panel with first and second substrates, each having a display area and a non-display area, which are bonded to each other and separated from each other by liquid crystal material. A thermally conductive layer is formed on any one of the first and second substrates to prevent the liquid crystal material from becoming too cool, thereby preventing temperature-dependent formation of bubbles within the liquid crystal material. Such a liquid crystal display device may be simply fabricated.
Abstract:
The present invention relates to an apparatus and method for manufacturing a battery terminal plate, and more particularly relates to an apparatus and method for manufacturing a battery terminal plate, in which a terminal plate for a secondary battery, such as a middle or large sized Lithium ion battery, which is applied to electric vehicles, hybrid vehicles, plug-in hybrid vehicles, solar cells, electric tools and so on, is processed by not pressing but forging, a shifting and supplying apparatus for shifting a material to be processed in each forming and processing step may be moved by the shortest distance through a shift-return method (one step shift-return), the material is previously processed by punching so as not to satisfy a standard of a design, and the firstly processed material is secondly processed to satisfy the standard.
Abstract:
A method of manufacturing a battery terminal plate includes primarily pressing a single processing material corresponding to a volume body into a semi-product having an asymmetric shape through a press cutting unit; gripping the semi-product and feeding the semi-product to a first processing unit by a pickup unit; asymmetrically pressing the semi-product by a first punch to primarily forge the semi-product into a volume body part and a plate part; pressing the semi-product located in the first processing unit by a second punch to secondarily forge the semi-product while forming a detailed structure at the volume body part and the plate part; pressing the semi-product with a pressure stronger than that in the second forging step by a third punch to tertiary forge the semi-product; and punching the semi-product by a cutting/trimming unit to removing the pickup gripping member and cutting an outer peripheral portion into a final product.
Abstract:
An LED package includes a lead frame, a housing part, and a lead heat dissipating part. The lead frame includes a first lead mounting an LED chip and a second lead spaced apart from the first lead. The housing part covers a portion of the lead frame and includes an opening part for exposing the LED chip, a first side corresponding to a support side contacting the first lead and the second lead, and a second side opposite to the first side. The lead heat dissipating part is extended from the first lead and exposed partially to the first side of the housing part. Herein, the first side of the housing part is thicker than the second side.
Abstract:
A display device includes first, second, and third gate lines. The display device further includes a first data line and a second data line neighboring the first data line. The display device further includes first, second, and third pixel electrodes connected to the first, second, and third gate lines, respectively, and further includes a fourth pixel electrode connected to the second gate line. The fourth pixel electrode is disposed between the first and third electrodes and neighbors each of the first, second, and third pixel electrodes. The first, second, and third pixel electrodes are connected to the first data line. The display device further comprises a gate driver for applying copies of a gate-on voltage to the gate lines, the gate-on voltage including a first voltage in a first horizontal period, a second voltage in a second horizontal period, and a third voltage in a third horizontal period.
Abstract:
A method for manufacturing molten iron including the steps of producing reducing material of mixed hot fine direct reduced iron and calcined additives, the reducing material being produced from multiple fluidized beds; charging the reducing material to at least one pair of roller presses; roll pressing the reducing material through the one pair of roller presses to produce continuous compacted material having protrusions formed on pressed surfaces; crushing the compacted material; charging the crushed compacted material to a coal packed bed; and supplying oxygen to the coal packed bed to manufacture molten iron, wherein in the producing compacted material, the compacted material is formed such that acute and obtuse angles are formed between a center line formed along a length of a cross section that is cut along a lengthwise direction perpendicular to an axial direction of the roller presses and connecting lines that connect grooves closest to each other across the cross sectional area. An apparatus for manufacturing molten iron performs the inventive method for manufacturing molten iron. The processes involved in manufacturing molten iron using the invention are convenient, efficient, improve productivity, and allow for more flexibility with respect to equipment operation during the manufacture of compacted material.
Abstract:
A lead free solder is provided. The lead free solder includes about 1.5 wt % to about 2.5 wt % silver (Ag), about 3 wt % to about 6 wt % bismuth (Bi), about 0.005 wt % to about 0.1 wt % of a deoxidizing agent, and a balance of tin (Sn). The lead free solder has improved wettability, a lowered melting point, little or substantially no formation of oxidation layer in a solder bath, suppressed brittleness, improved thermal shock resistance and drop resistance.
Abstract:
A self movable boom system is provided. The self movable boom system include: a boom disposed on a plane perpendicular to a building clamp structure; and a moving unit apparatus including a circumferential moving unit which is disposed between the boom and the building clamp structure to move the boom on a plane perpendicular to the building clamp structure, a lifting-up unit of which one end is disposed toward the circumferential moving unit and of which other end is disposed toward the building clamp structure to move the boom along a longitudinal direction of the building clamp structure, and a boom moving unit which moves an object along the longitudinal direction of the building clamp structure and along a longitudinal direction of the boom.
Abstract:
A method of fabricating a semiconductor device includes providing a semiconductor substrate including a first landing plug and a second landing plug. A bit line is formed over the semiconductor substrate. The bit line is electrically coupled to the first landing plug. A stacked structure of an etch stop film and an interlayer insulating film is deposited over the semiconductor substrate including the bit line. The stacked structure is selectively etched using a contact mask to form a contact hole having an upper part that is wider than a lower part of the contact hole. The contact hole exposes the second landing plug. A contact plug is formed over the contact hole. The contact plug is electrically coupled to the second landing plug.
Abstract:
A self movable boom system is provided. The self movable boom system include: a boom disposed on a plane perpendicular to a building clamp structure; and a moving unit apparatus including a circumferential moving unit which is disposed between the boom and the building clamp structure to move the boom on a plane perpendicular to the building clamp structure, a lifting-up unit of which one end is disposed toward the circumferential moving unit and of which other end is disposed toward the building clamp structure to move the boom along a longitudinal direction of the building clamp structure, and a boom moving unit which moves an object along the longitudinal direction of the building clamp structure and along a longitudinal direction of the boom.