Abstract:
Devices, systems and methods are disclosed which relate to using wet foam elution for removal of particles from swabs and wipes. This allow users to capture particles from surfaces and recover them by elution into small sample volumes for subsequent detection for human clinical, veterinary, food safety, pharmaceutical, outbreak investigations, forensics, biodefense and bioterrorism response, environmental monitoring, and other applications where collection of samples from surfaces and humans or animals is required. More specifically, the swabs or wipes are used to collect samples in the standard ways that commercially available swabs and wipes are in use today; from, for instance, food preparation surfaces in food plants, from production equipment in pharmaceutical facilities, for collection of dry powders during bioterrorism event response, and for collection of clinical samples such as nasal, throat, nasopharyngeal, and wounds.
Abstract:
Devices, systems and methods are disclosed which relate to using a wet foam elution method for removal of particles from a flat filter. Particles are captured from the atmosphere onto the flat filter. The flat filter is then placed into an extractor which passes a stream of wet foam through the flat filter. Expansion of the foam works to efficiently remove captured particles. The foam flows from the filter along with the captured particles into a sample container. Once in the sample container, the foam quickly breaks down leaving an analysis ready liquid sample.
Abstract:
A rapid one-pass liquid filtration system efficiently concentrates biological particles that are suspended in liquid from a dilute feed suspension. A sample concentrate or retentate suspension is retained while eliminating the separated fluid in a separate flow stream. Suspended biological particles include such materials as proteins/toxins, viruses, DNA, and/or bacteria in the size range of approximately 0.001 micron to 20 microns diameter. Concentration of these particles is advantageous for detection of target particles in a dilute suspension, because concentrating them into a small volume makes them easier to detect. Additional concentration stages may be added in “cascade” fashion, in order to concentrate particles below the size cut of each preceding stage remaining in the separated fluid in a concentrated sample suspension. This process can also be used to create a “band-pass” concentration for concentration of a particular target size particle within a narrow range.
Abstract:
Devices, systems and methods are disclosed which relate to using a wet foam elution method for removal of particles from a flat filter. Particles are captured from the atmosphere onto the flat filter. The flat filter is then placed into an extractor which passes a stream of wet foam through the flat filter. Expansion of the foam works to efficiently remove captured particles. The foam flows from the filter along with the captured particles into a sample container. Once in the sample container, the foam quickly breaks down leaving an analysis ready liquid sample.
Abstract:
Devices, systems and methods are disclosed which relate to using wet foam elution for removal of particles from swabs and wipes. This allow users to capture particles from surfaces and recover them by elution into small sample volumes for subsequent detection for human clinical, veterinary, food safety, pharmaceutical, outbreak investigations, forensics, biodefense and bioterrorism response, environmental monitoring, and other applications where collection of samples from surfaces and humans or animals is required. More specifically, the swabs or wipes are used to collect samples in the standard ways that commercially available swabs and wipes are in use today; from, for instance, food preparation surfaces in food plants, from production equipment in pharmaceutical facilities, for collection of dry powders during bioterrorism event response, and for collection of clinical samples such as nasal, throat, nasopharyngeal, and wounds.
Abstract:
Highly efficient and rapid filtration-based concentration devices, systems and methods are disclosed with sample fluidic lines and a filter packaged in a disposable tip which concentrate biological particles that are suspended in liquid from a dilute feed suspension. A sample concentrate or retentate suspension is retained while eliminating the separated fluid in a separate flow stream. The concentrate is then dispensed from the disposable tip in a set volume of elution fluid. Suspended biological particles include such materials as proteins/toxins, viruses, DNA, and/or bacteria in the size range of approximately 0.001 micron to 20 microns diameter. Concentration of these particles is advantageous for detection of target particles in a dilute suspension, because concentrating them into a small volume makes them easier to detect. A single-use pipette tip includes fluid ports for aspirating the sample and connecting to a concentrating unit.
Abstract:
Devices, systems and methods are disclosed which relate to using a wet foam elution method for removal of particles from a flat filter. Particles are captured from the atmosphere onto the flat filter. The flat filter is then placed into an extractor which passes a stream of wet foam through the flat filter. Expansion of the foam works to efficiently remove captured particles. The foam flows from the filter along with the captured particles into a sample container. Once in the sample container, the foam quickly breaks down leaving an analysis ready liquid sample.
Abstract:
Devices, systems and methods are disclosed which relate to a prefiltration device that can be used with the concentrating pipette instruments and other devices which draw a sample in through one opening and dispense a concentrated or eluted sample out through the same opening. The device allows the sample to be passed through a prefilter when entering the opening and then bypassed the prefilter when being dispensed through the same opening.
Abstract:
Devices, systems and methods are disclosed which relate to using containers with a multitude of nucleation sites covering a major portion of the inside wall of the container to enable rapid and nearly complete removal of soluble gases from fluid samples, including carbonated beverages and other carbonated fluid samples. A fluid sample is rapidly poured into the described container initiating a catastrophic release of the soluble gas from the sample.