Abstract:
A method for forming a plurality of metal lines in a semiconductor device including forming first insulating layer patterns on a semiconductor substrate, the first insulating patterns being spaced from each other; depositing a metal layer on and between the first insulating layer patterns; planarizing the metal layer; patterning the planarized metal layer to form the plurality of metal lines between the first insulating layer patterns; and forming a second insulating layer on and between the metal lines.
Abstract:
An organic light emitting diode (OLED) display includes a light-emitting region including an organic emission layer and a non-light-emitting region neighboring the light-emitting region. The OLED display includes a first electrode positioned at the light-emitting region and including a plurality of division regions divided according to a virtual cutting line crossing the light-emitting region, an organic emission layer positioned on the first electrode, a second electrode positioned on the organic emission layer, a driving thin film transistor connected to the first electrode, and a plurality of input terminals positioned at the non-light-emitting region and respectively connecting between each of division regions and the driving thin film transistor.
Abstract:
A method for testing an array, by using an array testing device for detecting a voltage distribution formed on an array substrate, includes resetting pixel voltages of a plurality of pixel circuits formed on the array substrate with a predetermined voltage, detecting the voltage distribution of the array substrate, generating a correction value for correcting the voltage distribution of the array substrate, and measuring a threshold voltage of a driving transistor included in the plurality of pixel circuits formed on the array substrate by applying the correction value.
Abstract:
An organic light emitting display device includes a pixel unit including a plurality of pixels formed in regions where a plurality of scan lines and a plurality of data lines cross each other, a first scan driving unit detecting a defect of the plurality of pixels by sequentially applying a first test signal to the plurality of scan lines, and a second scan driving unit detecting a defect of the plurality of pixels by simultaneously applying a second test signal to the plurality of scan lines.
Abstract:
A display device includes a plurality of pixels, each pixel including an organic light emitting diode (OLED) and a driving transistor, a sustain power supply unit applying a first sustain voltage to a plurality of data lines connected to the plurality of pixels, and a data driver applying one of a data signal and a second sustain voltage to the plurality of data lines. For each pixel, the sustain power supply unit applies the first sustain voltage as a first level voltage to reset a gate voltage of the driving transistor and applies the first sustain voltage as a second level voltage to increase the gate voltage of the driving transistor. When an anode voltage of the OLED in each pixel is discharged to be reset, the anode voltage of the OLED is controlled according to a voltage difference between the first level voltage and the second level voltage.
Abstract:
A thin film transistor display panel includes a plurality of pixels arranged in a matrix format, the plurality of pixels include thin film transistors, respectively, a plurality of first signal lines connected with the pixels, a plurality of second signal lines connected with the pixels, the plurality of second signal lines cross the first signal lines in an insulated manner, at least one of the second signal lines includes a cut portion, and an organic repairing member overlaps the cut portion
Abstract:
A thin film transistor (TFT) array substrate is provided that includes a TFT on a substrate. The TFT can include an active layer, gate electrode, source electrode, drain electrode, first insulating layer between the active layer and the gate electrode, and second insulating layer between the gate electrode and the source and drain electrodes. A pixel electrode is disposed on the first and second insulating layers. A capacitor including a lower electrode is disposed on a same layer as the gate electrode and an upper electrode. A third insulating layer directly between the second insulating layer and the pixel electrode and between the lower electrode and the upper electrode. A fourth insulating layer covers the source electrode, the drain electrode, and the upper electrode, and exposes the pixel electrode and can further expose a pad electrode.
Abstract:
A flat panel display including a semiconductor circuit, and a method of manufacturing the semiconductor circuit are disclosed. In one embodiment, the semiconductor circuit includes i) a substrate, ii) a semiconductor layer and a first capacitor electrode formed on the substrate, the first capacitor electrode being doped to be conductive, iii) an insulating layer covering the semiconductor layer and the first capacitor electrode, iv) a gate electrode disposed on the insulating layer and corresponding to a portion of the semiconductor layer, and v) a second capacitor electrode disposed on the insulating layer and corresponding to the first capacitor electrode, wherein the gate electrode is thicker than the second capacitor electrode.
Abstract:
A display device includes a plurality of pixels, each pixel including an organic light emitting diode (OLED) and a driving transistor, a sustain power supply unit applying a first sustain voltage to a plurality of data lines connected to the plurality of pixels, and a data driver applying one of a data signal and a second sustain voltage to the plurality of data lines. For each pixel, the sustain power supply unit applies the first sustain voltage as a first level voltage to reset a gate voltage of the driving transistor and applies the first sustain voltage as a second level voltage to increase the gate voltage of the driving transistor. When an anode voltage of the OLED in each pixel is discharged to be reset, the anode voltage of the OLED is controlled according to a voltage difference between the first level voltage and the second level voltage.
Abstract:
An organic light emitting display device includes a substrate, a thin film transistor formed on the substrate and including an active layer, a gate electrode including a gate lower electrode and a gate upper electrode, a source electrode, and a drain electrode, an organic light emitting device electrically connected to the thin film transistor, wherein a pixel electrode formed of the same material as at least a part of the gate electrode in the same layer, an intermediate layer including a light emitting layer, and an opposed electrode arranged to face the pixel electrode are sequentially deposited.