Abstract:
A pixel circuit of a display device for realizing a certain color during a display period of time. The pixel circuit includes at least two light emitting elements, each said light emitting element for emitting a corresponding one of colors during the display period of time. An active element is commonly connected to the at least two light emitting elements to drive the at least two light emitting elements. The active element time-divisionally drives the at least two light emitting elements during the display period of time, such that each said light emitting element emits the corresponding one of the colors per a sub display period of time. The at least two light emitting elements realize the certain color in the display period of time by time-divisionally emitting the corresponding ones of the colors, each corresponding one of the colors being emitted per the sub display period of time.
Abstract:
Provided are an anthracene-based compound represented by Formula 1 or 2 and an organic light emitting device employing the same: where R is a hydrogen atom, a halogen atom, a cyano group, a hydroxyl group, a substituted or unsubstituted C1-C20 alkyl group, a substituted or unsubstituted C3-C20 cycloalkyl group, a substituted or unsubstituted C5-C30 heterocycloalkyl group, a substituted or unsubstituted C1-C20 alkoxy group, a substituted or unsubstituted C6-C30 aryl group, a substituted or unsubstituted C6-C30 aralkyl group or a substituted or unsubstituted C2-C30 heteroaryl group, L is a bivalent linking group and a substituted or unsubstituted C6-C30 arylene group or a substituted or unsubstituted C2-C30 heteroarylene group, and m is an integer of 0 to 3.
Abstract:
A method of manufacturing an organic light emitting display apparatus, the method including: forming an organic light emitting device including a first electrode, a second electrode, and an intermediate layer between the first electrode and the second electrode, on a substrate, the intermediate layer including an organic light emitting layer and an electron transport layer (ETL) containing an alkali metallic compound on the organic light emitting layer; sealing the organic light emitting device; and aging the organic light emitting device, wherein the aging includes thermal treatment at a temperature from about 80 to about 150 degrees C.
Abstract:
A display device includes a display panel and a fixing member fixed to the panel, the fixing member being formed of a resin material and being disposed to cover at least a portion of each surface of the display panel and increases durability of the display panel against external impact applied thereto and decreases thickness of the display device.
Abstract:
An organic light emitting display (OLED) device and method of fabricating the same are disclosed. The device may include unit pixel regions arranged on a substrate. Each of the unit pixel regions may include an emission region and a non-emission region. A pixel electrode may be disposed at least in the emission region. A pillar may be disposed between emission regions of adjacent unit pixel regions that emit same-colored light. The pillar may protrude upward further than the pixel electrode. An emission layer may be disposed on the pixel electrode. An opposite electrode may be disposed on the emission layer.
Abstract:
Organic light emitting devices including an electron transport-emission layer, and methods of preparing the same are included. The electron transport-emission layer may be an electron transport-red emission layer, an electron transport-green emission layer or an electron transport-blue emission layer. The methods produce high yields of the organic light emitting devices and are less expensive than conventional methods.
Abstract:
An OLED and a method of fabricating the same are provided, in which, when a reflective layer pattern is formed, a thin layer for a pixel electrode is opened at an edge of an emission region to form the pixel electrode without additional photolithography and etching processes by forming an undercut under the edge of the reflective layer pattern, i.e., under the edge of the emission region by over-etching, thereby simplifying the process and increasing the yield.
Abstract:
The subject invention is related to a cell-mediated gene therapy treatment using a cell composition that includes bioadhesive material. The bioadhesive material allows targeted and localized delivery of therapeutic somatic cells to the site of interest.
Abstract:
An organic electroluminescent display has: anode electrodes of R, G and B unit pixels formed separate from each other on a substrate; organic thin-film layers of the R, G and B unit pixels formed on the anode electrodes; and a cathode electrode formed over an entire surface of the substrate. The anode electrode of at least one unit pixel, among the R, G and B unit pixels, has a thickness different from anode electrodes of the other unit pixels. The anode electrode of each of the unit pixels comprises a first film having a high reflectivity and a second film for adjusting a work function. The second film of at least one unit pixel, among the unit pixels, has a thickness different from the second films of the other unit pixels. The second film of the R unit pixel is thicker than the second films of the other unit pixels.
Abstract:
The subject invention is related to a cell-mediated gene therapy treatment for orthopedic disease using a member belonging to the transforming growth factor-β (TGF-β) superfamily. TGF-β gene therapy as a new treatment method for degenerative arthritis is demonstrated. After transfection of TGF-β cDNA expression vectors into fibroblasts (NIH 3T3-TGF-β1), the cells were injected into rabbit achilles tendon and knee joints with artificially-made cartilage defects. Intratendinous injections were performed to determine the optimal concentration for in vivo expression. Partially defected cartilage model was made to simulate degenerative arthritis of the knee joint. The partial cartilage defect treated with the cell-mediated gene therapy procedure was covered by newly formed hyaline cartilage which indicates that the cells survived and stimulated matrix formation in this area. Completely denuded cartilage areas were covered by fibrous collagen.