Abstract:
A vertical modulator with a dual mode distributed Bragg reflection (DBR), includes a pair of integrated elements using different wavelengths to provide functions of logical operation, data switching and wavelength conversion. The optical device includes a first optical structure operating at a first wavelength (.lambda..sub.1) and a second optical structure operating at a second wavelength (.lambda..sub.2). The first and second optical structures are formed over a semiconductor substrate. The first optical structure, which operates at the first wavelength (.lambda..sub.1), transmits its data to the second optical structure so that data corresponding to the second wavelength (.lambda..sub.2) can be output. Since the wavelength of input light is different from the wavelength of output light, the optical device serves as a modulator which performs a logic operation and switching function while carrying out wavelength conversion.
Abstract:
An apparatus for receiving optical signals in DQPSK and method of controlling a phase offset in receiving optical signals for DQPSK is provided. An original optical signal modulated in DQPSK is received. The original optical signal is delayed by one bit to make a delay optical signal such that an interference on the original optical signal and the delay optical signal is performed. A control signal is generated by use of an interference result between the original optical signal and the delay optical signal. A phase offset for the interference between the original optical signal and the delay optical signal is controlled by use of the generated control signal. In receiving optical signals, the phase offset between the delay optical signal and the original optical signal is precisely controlled, thereby optimizing the transfer characteristics of an optical delay interferometer.
Abstract:
Provided is an optical network in which a wavelength division multiplexing-based optical transmission scheme is implemented. An apparatus for cross-connecting an optical path includes a path switch including a plurality of input terminals receiving optical signals from other nodes, and a plurality of output terminals sending the optical signals to the other nodes, the path switch switching the path of the optical signal so that the optical signal input via one of the input terminals is output to one of the output terminals; and a wavelength converter converting a wavelength of the optical signal input via the input terminal and outputting the wavelength-converted optical signal to the output terminal according to a switching result of the path switch. Thus, inefficient use of a network resource due to wavelength collision can be prevented, the path can be automatically cross-connected and thus quickly established, path switching and branch combination can be performed irrespective of wavelength, and switching can be performed irrespective of direction.
Abstract:
Disclosed are a digital equalization apparatus for a coherent optical receiver and a digital equalization method for a coherent optical receiver, capable of compensating for chromatic dispersion and polarization impairment through a digital signal processing, and capable of performing a clock recovery and a data recovery through a digital symbol synchronization. The digital equalization apparatus and the method compensate for various impairments occurring on an optical path in a digital manner and achieve synchronization through a simple structure.
Abstract:
An Ethernet device having multiple lanes and a method of operating the lanes are provided. In one general aspect, it is possible to allocate a dummy block to each of one or more lanes such that the lanes do not selectively participate in communications. In addition, on a receiving side, the dummy block can be removed from among the genuine data blocks to enable data to be decoded. In this case, an Ethernet device on a transmission side and an Ethernet device on a receiving side can exchange information of a lane to which the dummy block is allocated by use of a lane status message, and the lane status message may be based on a link fault message specified by Ethernet standards.
Abstract:
An OFDM receiver for compensating for I/Q imbalance is provided. The OFDM receiver includes an I/Q demodulator demodulating a received signal into a baseband in-phase (I) channel signal and a baseband quadrature (Q) channel signal, and an I/Q imbalance compensator compensating for imbalance between the I-channel signal and the Q-channel signal in a time domain. Accordingly, it is possible to solve the I/Q imbalance and suppress degradation in the performance of the OFDM communication device.
Abstract:
An OFDM optical transmitter and optical transmission method is provided. The OFDM optical transmitter includes a signal converter controlling amplitude of each of data signals according to a position of each of the data signals and converting the controlled data signal into a time-domain signal. Accordingly, it is possible to generate optical OFDM carriers which are uniform in size.
Abstract:
A timestamping apparatus and method are provided. The timestamping apparatus implements timestamping on a synchronization message at a physical layer when the synchronization message is transmitted to the physical layer. At an application layer of the timestamping apparatus, a bit stream including a start indicator bit informing a start of a pseudo random number sequence, the pseudo random number sequence, and an end indicator bit informing an end of the pseudo random number sequence is generated to check whether or not a message received from the physical layer is the synchronization message, and is inserted as signature information of the synchronization message. At the physical layer of the timestamping apparatus, the signature information included in the synchronization message is detected, and timestamping information is generated when the signature information is detected.
Abstract:
Provided are an acousto-optic filter and an optical code division multiple access (CDMA) system using the acousto-optic filter. The acousto-optic filer includes: an acousto-optic mode converter (AOMC) converting an optical signal of a specific optical frequency corresponding to a frequency of an electric signal of an optical signal of a first mode having a predetermined optical frequency band; and a mode stripper (MS) stripping an optical signal of the optical signal of the first mode that has been converted to a second mode.
Abstract:
Provided are methods of transmitting and receiving a multicast or broadcast frame in an optical line terminal (OLT) and an optical network unit (ONU) for a wavelength division multiplexing (WDM)-passive optical network (PON), a WDM-PON system, and an OLT for a WDM-PON. The method of transmitting a multicast or broadcast frame in an OLT for a WDM-PON includes converting and splitting a multicast or broadcast frame input using a single wavelength into a plurality of wavelengths, combining the split wavelengths, and outputting the multicast or broadcast frame. In this way, a multicast or broadcast frame can be transmitted and received, thereby providing a single copy broadcast (SCB) function in a WDM-PON.