Abstract:
A timestamping apparatus and method are provided. The timestamping apparatus implements timestamping on a synchronization message at a physical layer when the synchronization message is transmitted to the physical layer. At an application layer of the timestamping apparatus, a bit stream including a start indicator bit informing a start of a pseudo random number sequence, the pseudo random number sequence, and an end indicator bit informing an end of the pseudo random number sequence is generated to check whether or not a message received from the physical layer is the synchronization message, and is inserted as signature information of the synchronization message. At the physical layer of the timestamping apparatus, the signature information included in the synchronization message is detected, and timestamping information is generated when the signature information is detected.
Abstract:
The present invention provides to a method for removing nitrogen and phosphorous in wastewater simultaneously from wastewater by employing fermentation broth obtained by anaerobic fermentation of organic solid wastes. The method for removing nitrogen and phosphorous in wastewater of the invention comprises the steps of subjecting organic waste material to anaerobic fermentation at 30 to 40° C. for 2 to 4 days by using anaerobic sludge to obtain fermentation broth; and, adding the fermentation broth to a sequencing batch reactor with alternating anaerobic-aerobic-anoxic cycles under anaerobic and anoxic conditions in a separate manner. In accordance with the present invention, nitrogen in the influent wastewater can be removed more than 95% in total and phosphorous concentration can be kept below 1 ppm regardless of the concentration of organic materials in the influent wastewater. Further, the present method requires no extra pretreatment steps or chemicals which are essential to remove residual ammonia nitrogen in the prior art systems, and lowers the overall cost for wastewater treatment due to the usage of organic waste materials.
Abstract:
A resilient snap fitment member comprising a first spacing member extending from a surface of a mount. A lateral member extends from the first spacing member and is spaced from the mount. A second spacing member extends from the lateral member in the direction away from the surface and a cantilevered abutment member extends from the second spacing member co-acting with the mount to capture a mountable member such as a printed circuit board.
Abstract:
An electronic device such as a mobile telephone and including a main body (10) having a display panel (16); a cover (12) pivotally attached to the main body. The cover is moveable between a first position where the cover (12) overlies the display panel (16), and a second position to allow access to the display panel (16) by a user. An aperture (28) is created in the cover (12) in which is located a second display panel (30).
Abstract:
A switch assembly which has a mount (12), an elongate member (14), a switch (16) and a fulcrum (18). Pressing on elongate member (14) provides a force to actuate switch (16). Elongate member (14) is resilient or, alternatively, is resiliently biased to return to an unactuated position. Fulcrum (18) is movable along a length of elongate member (14). Positions of fulcrum (18) along the length enables variation of the force to actuate switch (16). As a result of this variation, different tactile feel of the switch assembly can be provided depending on position of fulcrum (18) relative to switch (16). Fulcrum (18) can also be positioned along elongate member (14) to provide a locking position that prevents switch (16) from being actuated.
Abstract:
A vertical external cavity surface emitting laser is provided that is integrally mounted on a single heat sink together with a pump laser. In the surface emitting laser, a laser chip has a gain structure to emit light at a predetermined wavelength and it is disposed on a center portion of a top surface of a heat sink, an external mirror is spaced apart from the laser chip at a predetermined distance to transmit a portion of the light emitted from the laser chip to an outside and to reflect the remaining portion of the light to the laser chip, a pump laser is disposed on one side of a top surface of the heat sink to emit pump light in a horizontal direction for activating the laser chip, and a reflection mirror is disposed on the other side of the top surface of the heat sink opposite to the pump laser to reflect the pump light emitted from the pump laser to the laser chip.
Abstract:
A vertical external cavity surface emitting laser is provided that is integrally mounted on a single heat sink together with a pump laser. In the surface emitting laser, a laser chip has a gain structure to emit light at a predetermined wavelength and it is disposed on a center portion of a top surface of a heat sink, an external mirror is spaced apart from the laser chip at a predetermined distance to transmit a portion of the light emitted from the laser chip to an outside and to reflect the remaining portion of the light to the laser chip, a pump laser is disposed on one side of a top surface of the heat sink to emit pump light in a horizontal direction for activating the laser chip, and a reflection mirror is disposed on the other side of the top surface of the heat sink opposite to the pump laser to reflect the pump light emitted from the pump laser to the laser chip.
Abstract:
The present invention provides a method for manufacturing organic acid by high-efficiency fermentation, which comprises the steps of continuous culture of organic acid bacteria and collection of organic acid produced from the culture employing a cell-recycle multiple-stage continuous fermentor with serially connected fermentors, each of which comprises a fermentor containing a ferment container, temperature controller, stirrer, and pH controller; pumps for efflux-circulation of media from the fermentor; and, cell separator for separation and circulation of media from the pumps. According to the present method, the high-concentration lactic acid of 90 g/L can be produced with the high productivity of 50 g/L/h, which can reduce the facility cost and production cost in the bulk manufacturing process. In addition, the present invention can be effectively applied to the production of other organic acids such as acetic acid, formic acid, citric acid, malic acid, maleic acid, fumaric acid, and succinic acid, which show the end-product inhibition.