Abstract:
A transmitting apparatus for transmitting signals in a multi carrier system on the basis of a frame structure, each frame including at least two signalling patterns adjacent to each other in the frequency direction and at least two data patterns, the transmitting apparatus including signalling mapping means to map signalling data on frequency carriers of each of the at least two signalling patterns in a frame, each signalling pattern having the same length, data mapping means to map data on frequency carriers of the at least two data patterns in a frame, transforming means to transform the signalling patterns and the data patterns from the frequency domain into the time domain in order to generate a time domain transmission signal, and transmitting means to transmit the transmission signal. A corresponding transmitting method and a frame pattern for a multi carrier system are also provided.
Abstract:
A method, and corresponding modem, of transmitting data. The method including: modulating the data onto a plurality of carriers with different carrier frequencies, resulting in a transmission signal; notching predetermined frequency bands of the transmission signal, which predetermined frequency bands would otherwise disturb external transmissions; and boosting carriers that are adjacent to the predetermined frequency bands and that would be attenuated because of the notching.
Abstract:
In order to optimize data traffic in an ad-hoc established device network, the data traffic is monitored in order to determine which amount of the data traffic to and from a specific device is reflected by the central controller. Reflected data streams should be avoided because they increase the load of the network. If more than a predefined amount of said data traffic is reflected by the central controller, and if the specific device is a controller-capable device, a handover of the control functionality is performed in order to establish said specific terminal device as the new central controller. Thus, reflected data streams are reduced.
Abstract:
A power line communication method for realizing data communication between at least one first or sending power line communication partner device and at least one second or receiving power line communication partner device. The method checks transmission conditions of a plurality of possible communication channels, thereby generating transmission condition data descriptive for the communication conditions of the respective possible communication channels. Additionally, communication conditions of the plurality of possible communication channels are selected as actual communication conditions based on the transmission condition data.
Abstract:
A networking system includes wired and/or wireless LANs connected to a virtual access point including a backbone network, wired-to-backbone bridges, and wireless-to-backbone bridges. A common media access control layer accesses different media of the backbone network and integrates a number of networking media elements of different multimedia data types interconnected by the networking system.
Abstract:
A power line communication method is provided for realizing data communication between at least one first or sending power line communication partner device (P1) and at least one second or receiving power line communication partner device (P10). The inventive method comprises a step of checking transmission conditions of a plurality of possible communication channels (Ch1, . . . , Chn). Thereby generating transmission condition data which are descriptive for the communication conditions of the respective possible communication channels (Ch1, . . . , Chn). Additionally, a step of selecting communication conditions of the plurality of possible communication channels (Ch1, . . . , Chn) as actual communication conditions based on said transmission condition data.
Abstract:
A transmission apparatus and method, respectively, mapping payload data of mapping input data streams onto a mapping output data stream having a channel bandwidth for transmission in a multi-carrier broadcast system. To enable selection of robustness for transmission of data, the apparatus includes a frame forming mechanism mapping data blocks of at least two mapping input data streams onto frames of the mapping output data stream covering the channel bandwidth, each frame including a payload portion, the payload portion including plural data symbols and being segmented into data segments each covering a bandwidth portion of the channel bandwidth. The frame forming mechanism is configured to map the data blocks of the at least two mapping input data streams onto data symbols of the payload portion and includes a MIMO mode selector selecting a MIMO mode of the data blocks per data segment and/or per mapping input data stream.
Abstract:
The present invention relates to an encoder for error correction code encoding input data words (D) into codewords (Z1, Z2), comprising: an encoder input (1451) for receiving input data words (D) each comprising a first number Kldpc of information symbols, an encoding means (1452) for encoding an input data word (D) into a codeword (Z1, Z2, Z3, Z4) such that a codeword comprises a basic codeword portion (B) including a data portion (D) and a basic parity portion (Pb) of a second number Nldpc−Kldpc of basic parity symbols, and an auxiliary codeword portion (A) including an auxiliary parity portion (Pa) of a third number MIR of auxiliary parity symbols, wherein said encoding means (14) is adapted i) for generating said basic codeword portion (B) from an input data word (D) according to a first code, wherein a basic parity symbol is generated by accumulating an information symbol at a parity symbol address determined according to a first address generation rule, and ii) for generating said auxiliary codeword portion (A) from an input data word (D) according to a second code, wherein an auxiliary parity symbol is generated by accumulating an information symbol m at a parity symbol address γ, wherein said parity symbol addresses γ are determined according to a second address generation rule Nldpc−Kldpc+{x+m mod Ga×QIR} mod MIR if x>Nldpc−Kldpc, wherein x denotes the addresses of a parity symbol accumulator corresponding to the first information symbol of a group of size Ga and QIR is an auxiliary code rate dependent, predefined constant, and an encoder output (1454) for outputting said codewords (Z1, Z2).
Abstract translation:本发明涉及一种用于将输入数据字(D)编码成码字(Z1,Z2)的纠错码的编码器,包括:编码器输入端(1451),用于接收输入数据字(D),每个输入数据字包括第一数字信号Kldpc 符号,用于将输入数据字(D)编码为码字(Z1,Z2,Z3,Z4)的编码装置(1452),使得码字包括基本码字部分(B),其包括数据部分(D)和 基本奇偶校验符号的第二编号Nldpc-Kldpc的基本奇偶校验部分(Pb)和包括辅助奇偶校验符号的第三数量MIR的辅助奇偶校验部分(Pa)的辅助码字部分(A),其中所述编码装置 )适于i)用于根据第一代码从输入数据字(D)产生所述基本码字部分(B),其中通过在根据第一代码确定的奇偶校验符号地址处累积信息符号来生成基本奇偶校验符号 地址生成规则,和ii)生成s 根据第二代码从输入数据字(D)辅助辅助码字部分(A),其中通过在奇偶校验符号地址γ处累积信息符号m来生成辅助奇偶校验符号,其中所述奇偶校验符号地址γ根据 如果x> Nldpc-Kldpc,则到第二地址生成规则Nldpc-Kldpc + {x + m mod Ga×QIR} mod MIR,其中x表示对应于大小为Ga的组的第一信息符号的奇偶校验符号累加器的地址, QIR是辅助代码速率相关的预定义常数,以及用于输出所述码字(Z1,Z2)的编码器输出(1454)。
Abstract:
A device for bit-demultiplexing in a multicarrier MIMO communication system (e.g. precoded spatial multiplexing MIMO communication systems using adaptive OFDM), including a multicarrier MIMO transmitter and a multicarrier MIMO receiver. The multicarrier MIMO transmitter includes a demultiplexer and symbol mapper unit receiving an input bit stream and generating a plurality of symbol streams, each symbol stream being associated with a different transmission channel and including a plurality of data symbols, each data symbol being attributed to a different carrier; one or more multicarrier modulators generating at least two multicarrier modulated signals based on the symbol streams; and at least two transmit ports respectively transmitting the at least two multicarrier modulated signals, wherein a data throughput rate of each transmission channel is separately variable.
Abstract:
A transmission apparatus and method for transmitting signals in a multi carrier transmission system comprises a modulator, a band information generator that generates band information defining the frequency bands corresponding to all of the data streams carried within that frequency channel, said band information including a tuning frequency indicator indicating a tuning frequency and a tuning frequency type indicator indicating the type of tuning frequency indicated by said tuning frequency indicator, wherein said type is selected from a group comprising at least a first type indicating a tuning frequency of a frequency band and a second type indicating a center frequency of a frequency channel, and a transmitter.