Abstract:
A method determines an optimized production schedule of a production line including a hybrid multi-cluster tool formed by a plurality of single-arm tools and dual-arm tools interconnected with each other. The method includes determining time for individual operations of a robotic arm and a processing module in the plurality of single-arm tools and dual-arm tools; determining robot waiting time of the single-arm tools and dual-arm tools based on the time for individual operations and different connection relationships of the plurality of single-arm tools and dual-arm tools; determining whether the optimized production schedule exists using the determined waiting time, wherein the optimized production schedule only exists if the hybrid multi-cluster tool is process-dominant where the robot activity time of the plurality of single-arm tools and dual-arm tools is substantially shorter than processing time at the processing module; and determining the optimized production schedule if the optimized production schedule exists.
Abstract:
The present invention relates to an oridonin functionalized selenium nanoparticle, method of preparing and use thereof for anti-cancer and anti-inflammatory treatments. The present invention provides oridonin functionalized selenium nanoparticle that is stable, water soluble and storable.
Abstract:
The present invention relates to a method for treating gefitinib-resistant non-small-cell lung cancer (NSCLC) comprising administering an effective amount of a resveratrol analog, (Z)3,4,5,4′-tetramethoxystilbene (TMS), to a subject in need thereof. The present invention also relates to a method for inducing apoptosis in gefitinib-resistant NSCLC cells comprising contacting the resveratrol analog to the cells at an effective amount. The present methods are mediated by different signaling pathways connected to cell proliferation and differentiation such as mTOR, JNK, and certain EGFR phosphorylated tyrosine kinase.
Abstract:
The present invention discloses a method of treating cancer comprising administering an effective amount of an alkaloid, in which the alkaloid is liensinine, isoliensinine, dauricine, cepharanthine, hernandezine or thalidezine and isolated from the traditional Chinese medicinal herbs. The use of the alkaloid in treating neurodegenerative disorder is also disclosed.
Abstract:
The throughput of a wireless network can be boosted by network coding (NC). The present invention combines NC-aware routing and TDMA-based MAC protocol for energy-efficient design in the wireless network, and provides a method thereof. An optimization model, which is a minimum energy consumption model (MECM), is formulated for minimizing the energy consumption for accomplishing a set of flow transmissions. In particular, based on a set of user traffic-flow demands, a NC-aware traffic-flow assignment that minimizes a total energy consumption of packets delivering to meet the user traffic-flow demands is determined. Thereafter, given the optimal flow assignment, a minimum timeslots model (MTM) which leads to a TDMA-based scheduling strategy at the MAC layer is developed. The MTM is to minimize the total number of timeslots required for transmission under a condition that the NC-aware traffic-flow assignment as already determined is accomplishable.
Abstract:
The present invention provides a method of power control for a plurality of secondary users (SUs), or unlicensed users, in a cognitive radio network having a plurality of primary users (PUs), or licensed users. The method comprises determining an optimal power level for each of the SUs such that a total throughput of all the SUs is maximized while satisfying an individual throughput requirement of each SU and an interference limit constraint of the PUs. In particular, a case having two SUs is considered.
Abstract:
The present invention provides a novel semi-supervised learning method based on the combination of the Cox model and the accelerated failure time (AFT) model, each of which is regularized with L1/2 regularization for high-dimensional and low sample size biological data. In this semi-supervised learning framework, the Cox model can classify the “low-risk” or a “high-risk” subgroup though samples as many as possible to improve its predictive accuracy. Meanwhile, the AFT model can estimate the censored data in the subgroup, in which the samples have the same molecular genotype. Combined with L1/2 regularization, some genes can be selected by the Cox model and the AFT model and they are significantly relevant with the cancer.
Abstract:
The present invention relates to an oridonin functionalized selenium nanoparticle, method of preparing and use thereof for anti-cancer and anti-inflammatory treatments. The present invention provides oridonin functionalized selenium nanoparticle that is stable, water soluble and storable.
Abstract:
The present invention discloses a method of treating gefitinib-resistant non-small-cell lung cancer, comprising administering an effective amount of D561-0775. A pharmaceutical composition comprising D561-0775 admixed with a pharmaceutical carrier for treating Gefitinib-resistant non-small-cell lung cancer is also disclosed therein.
Abstract:
The present invention relates to a method for treating gefitinib-resistant non-small-cell lung cancer (NSCLC) comprising administering an effective amount of a resveratrol analogue, (Z)3,4,5,4′-tetramethoxystilbene (TMS), to a subject in need thereof. The present invention also relates to a method for inducing apoptosis in gefitinib-resistant NSCLC cells comprising contacting the resveratrol analogue to the cells at an effective amount. The present methods are mediated by different signaling pathways connected to cell proliferation and differentiation such as mTOR, JNK, and certain EGFR phosphorylated tyrosine kinase.