Abstract:
A polarization insensitive optical freqency mixer comprising an optical fiber coupler block (2), a silica fibre (6) with a region whose cladding (4) has been polished off close to the core (8) on which is rotatably mounted interdigitated electrodes (12) spaced from the coupler block (2) by a polymer film spacer (12). The electrodes (12) induce a spatially periodic electric field within the core (4) which reverses every half period which provides frequency doubling of light passing through the fibre (6) over the whole grating length. The electrodes are dimensioned to provide polarization insensitized frequency mixing by providing that the electric field components within the optical waveguide are substantially equal in two mutually orthogonal directions transverse the waveguide.
Abstract:
There is provided an optical frequency converter comprising: an optical guiding structure having an input and an output, and comprising: a first grating portion adjacent to the input; a second grating portion adjacent to output, and a third grating between the first and second grating portion to form an apodized step-chirped grating extending between the input and the output. Each grating portion comprises a plurality of sections each comprising a plurality of segments. Each segment has a segment width and comprises a poled region having a poled width at least equal to one micron and a reversely poled region. The segment width for all of the grating portions and a duty ratio of the poled width to the segment width are constant within each section. The duty ratio increases within the first grating portion, decreases within the second grating portion, and is constant within the third grating portion.
Abstract:
There is described herein a method and system for inscribing gratings in optical waveguides. The waveguides may be hydrogen-free, germanium-free, low germanium, low hydrogen, and a combination thereof. Such gratings written in hydrogen-free fibers are suitable for sensor applications in which the use of hydrogen for photosensitizing fibers is undesirable owing to their increased sensitivity to nuclear radiation. The grating are formed by at least one pulse having a wavelength comprised between about 203 nm and about 240 nm. The laser source may be a Continuous Wave (CW) laser source or a pulsed laser source generating at least one pulse having a width in the order of nanoseconds (109).
Abstract:
An optical waveguide sensing method and device in which a waveguide layer receives an optical signal and propagates the optical signal in accordance with a predetermined optical waveguide propagation mode. A testing medium surface in communication with the waveguide layer is responsive to a testing medium for modifying at least one characteristic of the propagated optical signal in relation to a given parameter of the testing medium. In this manner, the modified characteristic of the propagated optical signal can be measured in view of determining the given parameter of the testing medium.
Abstract:
There is described an optical fiber sensor for sensing one of vibration, temperature, and strain, comprising: a laser source; a first single mode optical fiber having a first end and a second end, the first end connected to the laser source for receiving and propagating light from the laser source; a multimode optical fiber having a first end and a second end, the first end connected to the second end of the first single mode optical fiber for receiving the light and thereby exciting a plurality of modes of the multimode optical fiber, the multimode optical fiber being stretched at an out of band frequency and operated at a point at which an output is a linear function of a displacement of the multimode fiber; and a sampling photo-detector module connected to the second end of the multimode optical fiber for spatially filtering an output of the multimode fiber to obtain a spatially filtered interference pattern, and for detecting a variation of the spatially filtered interference pattern when one of the vibration, temperature, and strain is applied to the multimode optical fiber.
Abstract:
An optical fibre in a core and a cladding that includes an inner cladding region with a refractive index that is photosensitive to UV light, surrounded by a non-photosensitive outer cladding region. Refractive index gratings can be written into the cladding region. Also, the refractive index of the inner region can be altered by exposure to UV light to achieve mode matching at a splice between fibres with different core diameters. An optical fibre laser is disclosed with integral refractive index gratings in the cladding of a fibre with an optically active core.
Abstract:
An optical fibre is fixed against a first face of a prism. A coherent beam of optical radiation is directed at the prism such that a portion B propagates directly to the first face while a second portion propagates via total internal reflection at a second face. The interference of the two portions creates a refractive index grating in the fibre at a wavelength longer than that of the radiation. The method provides a stable and simple method of sidewriting of waveguide gratings.
Abstract:
A method of structurally modifying a silica monomode optical fiber (4) by launching optical power into the fiber (4) from an Nd:YAG laser operating at 1.064 .mu.m and raising the temperature of a portion of the fiber (4) by bringing a metal film (12) into contact with a polished half-coupler block (6) to absorb energy from the laser (2). A structural modification of the fiber is initiated which propagates towards the laser (2) sustained by the optical power. It provides a means of decommissioning an optical fiber. The modified optical fiber (4) has regular periodic damage sites which can be used to form a diffraction grating. The method may also be used as an optical power limiter to protect optical networks from too high optical power inputs.
Abstract:
An optical fibre Michelson interferometer has mirrors of highly reflective coatings deposited on the ends of the fibres forming the free arms of the interferometer. The interferometer preferably comprises single mode fibres, and is operated by a frequency swept laser.The interferometer has applications in the optical fibre interferometer sensing field.